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• The BFS Tree of a Undirected Graph

• The BFS Tree of a Directed Graph



Storing the Entire Search Space

• In CMPSCI 311 you’ll spend considerable time on search problems where the 
entire graph is given to you, usually as an adjacency list where for each node 
we have a list of the edges out of it.

• Given two nodes s and t in the graph, we can ask whether there is a path 
from s to t, how long the shortest path from s to t might be (measured by 
number of edges or measured by the total cost of the edges), or whether s 
and t remain connected if certain edges are deleted.

• With the whole graph stored (or just with a closed list) we avoid processing 
the same node twice.

• Both DFS and BFS on graphs will allow us to create a tree from the graph, 
which will allow us to address these problems more easily.



The DFS Tree of an Undirected Graph

• Recall that our DFS algorithm places nodes onto a stack when they are 
discovered, and processes all their edges when they are taken off the stack.

• Our DFS tree will have a tree edge from s to t if we encounter t for the first 
time while we are processing s, that is, if we discover t through its edge from 
s.  The tree edges form a tree that gives a path from the start node to each 
node that is reachable from it.

• If we defined the DFS recursively, the DFS tree would be essentially the call 
tree, because if (s, t) were a tree edge we would make the recursive call with 
parameter t in the course of processing the call with parameter s.

• A DFS of an undirected graph searches the entire connected component of 
the start node.  What can we tell about the edges that aren’t tree edges?



Tree Edges and Back Edges

• Let G be a connected undirected graph and let T be its DFS tree.  If G were a 
graph-theoretic tree, T and G would be the same graph (more precisely, T 
would be the rooted tree made from G with the start node as root). 

• But if while processing node s, we find an edge to a node t that is not new, 
that edge does not go into T.  (We’ll ignore the reverse directions of tree 
edges.)  Note that the processing of t must still be going on at this point, 
because we don’t finish processing t until we’ve finished all the nodes 
reachable from it, including s.  So t must be an ancestor of s in the tree, and 
the edge (s, t) is thus called a back edge.

• We’ll see an example on the board where the undirected graph G becomes a 
rooted tree T together with some back edges.  

• An articulation point is a node whose removal disconnects the graph.  Can 
you tell what condition on the tree and back edges makes t such a point?



The DFS Tree of a Directed Graph

• When we make a DFS of a directed graph, we still reach every node that is 
reachable from the start node.  But it’s no longer guaranteed that any or all of 
those nodes have paths back to the start point -- we no longer have a 
connected component to search.

• On HW#6 you’ll work out how to use the DFS algorithm to find the strongly 
connected components of a directed graph -- the equivalence classes of 
the equivalence relation P(x, y) ⋀ P(y, x).  If there is a back edge from a node t 
to an ancestor u, then all the nodes on the tree path from u down to t are in 
the same strongly connected component because they lie on a directed 
cycle.

• We can no longer guarantee that all the edges are either tree edges or back 
edges -- what are the other possibilities?



Four Kinds of Edges

• Let (u, v) be an arbitrary edge in a directed graph G.  In what different ways 
could (u, v) be encountered in a DFS of G?

• If we find u before v and first find v through the edge (u, v), it is a tree edge.

• If we find u before v, but find v through one of its siblings before we look at 
the edge (u, v), then (u, v) becomes a forward edge from u to a descendant.

• If we find v before u, and find u while we are still processing v, then the edge 
(u, v) becomes a back edge just as in the undirected case.

• If we find v before u and finish v before finding u (because there is no path 
from v to u), then (u, v) becomes a cross edge.



The BFS Tree of an Undirected Graph

• A breadth-first search gives rise to tree edges in the same way -- (u, v) is a 
tree edge if we encounter v during the processing of u, and put v on the 
queue.  The BFS tree is made up of all the tree edges, and is a rooted tree 
giving a shortest path (in number of edges) from the start node to each edge. 
(If there are multiple shortest paths, the algorithm will choose one as the tree 
path.)

• If u is at level k of the tree, and (u, v) is a non-tree edge, we know that v has 
already been put on the queue before the edge is seen.  If it is still on the 
queue, it must be also at level k.  If it has been finished, it must be at level 
k-1, because otherwise (in an undirected graph) we would have missed a 
shorter path from the start node to u by way of v.

• An undirected graph is bipartite if and only if we never get an edge from one 
node to another at the same level.  (This follows from the theorem that an 
undirected graph is bipartite if and only if it has no odd-length cycles.)



The BFS Tree of a Directed Graph

• In a BFS of a directed graph, the BFS tree will arrange the nodes into levels, 
based on their shortest-path distance from the start node (where again 
“shortest” means “fewest edges”).  

• If u is at level k and we find v for the first time while processing u, then (u, v) 
will be a tree edge and v will be at level k + 1.

• But if v has already been seen, it might be at any existing level of the tree 
from 0 to k or even k + 1, or might even not be in the tree at all!  Remember 
that if a DFS or BFS finishes without reaching all the nodes, we start a new 
tree at a new start point.  The node v might be in an earlier tree, which didn’t 
contain a path to u, but still have an edge from u.


