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Trees to Represent Expressions

• Trees are useful for representing collections of objects in a hierarchical 
structure, where every object except one has a unique “parent” object.  We’ve 
mentioned people in an organization, classes in an inheritance hierarchy, and 
files in a directory/folder system.

• Expressions are collections of atomic values connected by operators.  
We’ve seen boolean expressions in the first part of the course, and we’ll see 
them again in today’s discussion.  There are also arithmetic expressions as 
in Java.  Even whole programs can be thought of as expressions.

• Operators can be unary, meaning that they take one argument (like ¬ or -) or 
binary, meaning that they take two (like ⋀, ⋁, +, or ×).  In general we could 
also have ternary, 4-ary, or k-ary operators for any natural k.

• Our expressions are trees because each proper subexpression has exactly 
one parent.  (The entire expression, the root of the tree, has no parent.)



A Recursive Definition of Expression Trees

• We can give a recursive definition of expression trees that is very similar to 
our other recursive definitions:

• (1) A single atomic value is an expression tree.

• (2) A k-ary operator, acting on a sequence k expression trees, gives an 
expression tree.

• (3) The only expression trees are those given by rules (1) and (2).

• Rule (3) gives us a Law of Induction: if we prove that P(a) is true for any 
atomic value a, and prove that P(E) is true whenever E is any k-ary operator 
acting on any k expression trees E1,..., Ek such that P(Ei) is true for all i, then 
we have proved that P(E) is true for any expression tree E.



Types of Expressions

• In boolean expressions the atomic values are 0 and 1 (false and true), or 
variables ranging over those values, and the operators are ¬, ⋀, ⋁, ⊕, →, and 
↔.  In today’s discussion we’ll use just ⋀, ⋁, and ¬.  The ¬ operator is unary 
and all the other operators are binary.

• In Java arithmetic expressions the atomic values come from one of the 
number types, and the operators are +, ×, -, /, % (for integer types), and so 
forth.  The - operator can be either unary or binary -- the others are binary.  
We’ll consider our own arithmetic expressions to use just +, ×, -, and /.

•  Later in Chapter 5 and 14 we’ll work with regular expressions, where the 
atomic values are letters and ∅, and there is one unary operator * and two 
binary operators + and ⋅.  An induction over all regular languages will have 
two base cases and three inductive cases.



Prefix, Infix, and Postfix Strings for Expressions

• There are three ways to represent a boolean or arithmetic expression by a 
string.  For an example, consider the arithmetic expression “b×b - 4×a×c” 
that occurs in the quadratic formula.  The expression tree for this formula has 
nine nodes -- the root is a - operator, its children are × operators, and the 
leaves are atomic values a, b, c, and 4.

• “b×b - 4×a×c” is the infix string for this expression.  The prefix string for it is 
“-×bb××4ac” and the postfix string is “bb×4a×c×-”.  Note that each string 
contains the same atomic and operator symbols, just in a different order.  
(Some infix strings also contain parentheses, making them longer than the 
other two.)  

• We can recursively define each of the three strings from the expression.  For 
example, “the postfix string of an atomic value is itself, and the postfix string 
of an operator applied to k subexpressions is the concatenation of the postfix 
strings for the subexpressions, followed by the symbol for the operator”.



Parsing and Evaluating Expressions

• A major problem in computer science is to take a string and parse it, which 
means to determine the expression tree that it represents.  A compiler must 
take a string in a computer language and determine (1) whether it is a valid 
program, (2) how the string is broken down into language parts, and (3) what 
the meaning of the resulting program is.  You’ll see more about parsing in 
courses like CMPSCI 401 and 410.

• The most common thing to do with an expression is to evaluate it, which 
means to determine its value by applying the operators to the atomic values.  
The basic evaluation algorithm for an expression is “if the expression is an 
atomic value, return the value, and if it is an operation applied to 
subexpressions, evaluate the subexpression, apply the operator to the 
results, and return the result of the operator”.

• Parsing a program is just evaluating an expression over a complex set of 
values and operators, where the “value” is the meaning of each subprogram 
(as, for example, a machine-language program).



The Definition of Truth

• In this course we have been informal about what it means for a logical 
statement to be true or false in a given situation.  But to do 
metamathematics (mathematics about mathematics), we would need a 
formal definition of what a model for a statement is and whether a given 
statement is true in a given model.

• The Polish logician Alfred Tarski gave a formal definition of truth in 1933, 
using induction on the definition of logical statements.  A statement is built up 
from atomic statements using boolean operators and quantifiers.  The truth of 
atomic statements is assumed to be given in a model.  The truth of more 
complex statements can be defined by inductive rules, such as “∃x:P(x) is 
true if and only if there is an object z such that P(z) is true”, in terms of the 
truth of simpler statements.

• Tarski’s definition gives a justification for our four quantifier proof rules.



Call Trees for Algorithms

• If we have a method that makes recursive calls upon itself, but eventually 
terminates, we can make a diagram called a call tree that represents all the 
recursive calls.  A node in the call tree represents a call to the method, and 
node x has node y as a child if the call y is made by the version of the method 
called by call x.

• The call tree is finite if every version eventually terminates, and the leaves of 
the call tree are the nodes for calls that cause no recursion.

• If we prove that every leaf call terminates with the right answer, and that every 
non-leaf call terminates with the right answer if all of its child calls do so, then 
the Law of Induction for trees means that we have proved that every recursive 
call (every call tree) corresponds to a version of the method that terminates 
with the right answer.  This is how we prove that the method is correct.


