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Strings and String Operations

• Peano Axioms for Strings

• Pseudo-Java for the string Class

• Defining the String Operations

• Proof By Induction For Strings

• Concatenating Strings Adds Lengths

• Concatenation is Associative

• Reversal of a Concatenation



Peano Axioms for Strings

• We define our string data type for any fixed alphabet Σ by induction, just as 
we defined the naturals.  The basic way to make new strings from old is by 
appending a letter to a string.  Here are the “Peano axioms” for strings.

• Of course we have several equivalent versions of the fifth axiom, just as for 
naturals.  For example, from P(λ) and ∀w:∀a: P(w) → P(wa) we can conclude 
∀w: P(w), by the Law of String Induction.

1.  λ is a string.

2. If w is a string and a is a letter in Σ, then wa is a string.

3. If wa and vb are the same string, then w = v and a = b (i.e., no string is 
formed by appending in two different ways).

4. Any string other than λ is equal to wa for some string w and letter a.

5. The only strings are those made from λ by the second axiom.



Pseudo-Java for the string Class

• We can think of our string operations as being built up from basic string 
methods in our psuedo-Java programming language.  Remember that unlike 
real Java String objects, pseudo-Java string values are primitives.

• We have a method to test whether a string is empty, a method to append a 
letter, and two “inverses” for the append operation.  These throw an 
exception if called on an empty string.  If called on a string wa, last returns 
a, the last letter, and allButLast returns the string w.

public static boolean isEmpty( ){...}

public static string append (string w, char a) {...}

public static char last (string w) {...}

public static string allButLast (string w) {...}



Defining the String Operations

• We defined operations on naturals recursively, first saying what the operation 
does with argument 0 and then defining what argument n+1 does based on 
what argument n does.  Here we can do much the same thing for strings.

• Each operation comes from a simple recursive definition.  Note that the 
reversal method uses concatenation and has a type cast from letter to string.

public static natural length (string w) {
   if (isEmpty(w)) return 0;
   return successor(length(allButLast(w)));}

public static string cat (string w, string x) {
   if (isEmpty(x)) return w;
   return append(cat(w, allButLast(x)), last(x));}

public static string rev (string w) {
   if (isEmpty(w)) return w;
   return cat(last(w), rev(allButLast(w)));}



Proof By Induction for Strings

• As we noted above, an alternate version of the fifth Peano Axiom for strings 
allows us to prove statements of the form ∀x: P(x), where x is of type string, 
by induction on all strings.

• We need a base case of P(λ), and then an inductive case for each letter a in Σ, 
of the form ∀w: P(w) → P(wa).  With binary strings we must prove P(w) → 
P(w0) and P(w) → P(w1) for arbitrary w (or just prove P(w) → (P(w0) ∧ P(w1)).

• Each of our recursive definitions defines f(wa), for example, in terms of f(w).  
So if we can phrase our statement P(w) so that it talks about f(w), then 
information about f(w) should be useful in talking about f(wa) when we prove 
P(wa).

• We’ll finish the lecture by doing three such inductive proofs.



Concatenating Strings Adds Lengths
• Our first proof relates a string operation to an operation on naturals.  When 

we concatenate two strings, we add their lengths.  Let’s prove the statement 
∀u: ∀v: |uv| = |u| + |v|, where we use “|u|” to mean the length of u.

• We let u be an arbitrary string and use string induction on v.  The statement 
P(v) is “|uv| = |u| + |v|”, or “length(cat(u, v)) == plus(length(u), 
length(v))”.

• The base case P(λ) says that |uλ| = |u| + |λ|, which is true because the 
definitions tell us that uλ = u, |λ| = 0, and |u| = |u| + 0.

• We assume P(v) and look at P(va), which says |u(va)| = |u| + |va|.  The 
definition of concatenation says that u(va) = (uv)a, and the definition of length 
then says that |u(va)| = |(uv)a| = successor(|uv|).  The definition of length says 
that |va| = successor(|v|), and the definition of addition says that |u| + 
successor(|v|) = successor(|u| + |v|).  We finish by using the IH to replace |uv| 
by |u| + |v|.  This completes the inductive step for arbitrary v and a.



Concatenation is Associative

• Now we prove ∀u:∀v:∀w: (uv)w = u(vw), where we use parentheses to indicate 
the order of operations.  We let u and v be arbitrary, and use string induction 
on w with P(w) as “(uv)w = u(vw)” or “cat(cat(u, v), w) == cat(u, 
cat(v, w))”.

• The base case P(λ) is “(uv)λ = u(vλ)”, which reduces to uv = uv by the 
definition of concatenating with λ.

• We assume P(w) and try to prove P(wa), which says “(uv)(wa) = u(v(wa))”.  
(Again we must be careful of notation, as we are using the same notation for 
appending and concatenation.)  The LHS is ((uv)w)a, and the RHS is u((vw)a) 
which we can convert to (u(vw))a, each time using the definition of 
concatenation.  The IH of “(uv)w = u(vw)” now lets us prove that the LHS 
equals the RHS, by appending an a to each side of this equation.



Reversal of a Concatenation

• Finally we prove the rule relating reversal and concatenation, the statement 
∀u:∀v:(uv)R = (vR)(uR).  (For example, (“bulldog”)R = (“dog”)R(“bull”)R = 
“godllub”.)  We’ll let u be arbitrary and use string induction on v.

• The base case P(λ) is “(uλ)R = λRuR”.  We can prove this with the rules uλ = u 
and λR = λ, and the theorem λu = u which is easy to prove by induction on u.

• So we assume P(v), “(uv)R = vRuR”, and try to prove P(va), “(u(va))R = (va)RuR”. 
The LHS is ((uv)a)R by the definition of concatenation, and a(uv)R by the 
definition of reversal.  (Note that this last is the concatenation of the two 
strings a and (uv)R.)  The RHS is (avR)uR by the definition of reversal, and then 
a(vRuR) by the associativity of concatenation from the previous slide.  We can 
now equate this form of the LHS and this form of the RHS by using the IH 
once.  This completes the inductive step and thus also the proof.


