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Proving the Basic Facts of Arithmetic

• The Semiring of the Naturals

• The Definitions of Addition and Multiplication

• A Warmup: ∀x: 0 + x = x

• Commutativity of Addition

• Associativity of Addition

• Commutativity of Multiplication

• Associativity and the Distributive Law



The Semiring of the Naturals

• The natural numbers form an algebraic structure called a semiring, following 
these axioms:

1.  There are two binary operations called + and ×.

2.  Both operations are commutative, so that ∀x: ∀y: (x+y) = (y+x) 
and ∀u: ∀v: (u × v) = (v × u).

3.  Both operations are associative, so that ∀x: ∀y: ∀z: x + (y + z) 
= (x + y) + z and ∀u: ∀v: ∀w: u × (v × w) = (u × v) × w.

4.  There is an additive identity called 0, so that x + 0 = 0 + x = x, 
and a multiplicative identity called 1, so that 1 × u = u × 1 = u.  
Also 0 × u = u × 0 = 0.

5.  Multiplication distributes over addition, so that ∀u: ∀v: ∀w: u × 
(v + w) = (u × v) + (u × w).



Definitions of Addition and Multiplication

• We defined addition recursively using the successor operation (now called 
“S” here to save space).  We defined x + 0 to be x, and defined x + Sy to be 
S(x + y).  This definition turned into a recursive method that always terminates 
because the number added, the second argument, always gets smaller.

• We also defined multiplication recursively using the successor and addition 
operations.  We defined x × 0 to be 0, and defined x × Sy to be (x × y) + x.   
Again there is a recursive method that always terminates because the second 
argument always gets smaller.

• We don’t want to assume any properties of the operations that we haven’t 
proved, and only a few of the semiring properties are true “by definition”.  Our 
notation can accidently make such assumptions -- when we write “(x × y) + x” 
we really mean plus(times(x, y), x) using our methods.



A Warmup: ∀x: 0 + x = 0

• We can prove the big properties either top-down or bottom-up.  A top-down 
approach identifies subproperties that we need to prove as we attack the 
overall problem through divide-and-conquer.  A bottom-up approach has us 
guess what subproperties might be useful to prove, just as we build up a 
library of methods in a Java class.

• The property ∀x: 0 + x = 0 does not appear in our definition, though ∀x: x + 0 
= x does.  It would follow from commutativity of addition, but we don’t have 
that yet.  Let’s prove it by ordinary induction on the (natural) variable x, letting 
P(x) be “0 + x = x”.

• The base case P(0) says “0 + 0 = 0”, and this does follow from the definition 
and so is true.  For the inductive case we assume “0 + x = x” and try to prove 
“0 + Sx = Sx”.  We evaluate 0 + Sx as S(0 + x) by the definition, then use the 
IH to get that this is Sx.  This finishes the inductive case and proves ∀x: P(x).



Commutativity of Addition
• How shall we prove ∀x: ∀y: x + y = y + x?  The usual technique is to let one 

variable be arbitrary and use induction on the other.  Since addition operates 
by recursion on the second argument, we’ll let x be arbitrary and use 
induction on y, letting P(y) be “x + y = y + x”.  

• The base case P(0) is “x + 0 = 0 + x”, and after our warmup we know that 
both of these are equal to x, so the base case is done.

• The inductive case assumes “x + y = y + x” and wants to prove “x + Sy = Sy 
+ x”.  The definition tells us that x + Sy = S(x + y), so we need to show that Sy 
+ x = S(y + x) or y + Sx.  Then we can use the IH to replace y + x by x + y.

• For the lemma ∀x: ∀y: Sy + x = y + Sx, we’d prefer to let y be arbitrary and 
use induction on x (we can switch the two ∀ quantifiers).  The P(x) for this 
induction is thus “Sy + x = y + Sx”.  The base case is “Sy + 0 = y + S0”, which 
follows from the definition.  For the inductive case, we compute Sy + Sx as 
S(Sy + x) which is S(y + Sx) by the IH, which is y + SSx, the RHS of P(Sx).



Associativity of Addition

• To prove ∀x: ∀y: ∀z: x + (y + z) = (x + y) + z, we let x and y be arbitrary and 
use ordinary induction on z.  The base case P(0) is “x + (y + 0) = (x + y) + 0”, 
which follows by using the base case of the definition once on each side.

• So we assume P(z), which is “x + (y + z) = (x + y) + z”, and try to prove P(Sz), 
which is “x + (y + Sz) = (x + y) + Sz”.

• Working with the LHS, x + (y + Sz) = x + S(y + z) = S(x + (y + z)), using the 
definition of addition each time.  This is S((x + y) + z) by the IH.  Using the 
definition of addition one more time, S((x + y) + z) is equal to (x + y) + Sz, 
which completes the inductive step and thus the proof.

• Note that we didn’t need commutativity to prove associativity here, though 
with multiplication the order of our proofs will matter.  Also note that we need 
to be sure not to assume associativity in our notation by writing “x + y + z”.



Commutativity of Multiplication
• Now we want to prove ∀u: ∀v: u × v = v × u, and we will work bottom-up. 

•  Our first lemma is ∀u: u × 0 = 0 × u.  We let u be arbitrary and note that u × 0 
= 0 by the definition.  We need induction to prove ∀u: 0 × u = 0.  We let P(u) 
be “0 × u = 0”, note that P(0) follows from the definition, assume P(u), and 
prove P(Su) or “0 × Su = 0” by applying the definition to 0 × Su to get (0 × u) + 
0, which is 0 + 0 by the IH and 0 by the definition of addition.

• Our second lemma is ∀u: ∀v: Su × v = (u × v) + v.  We let u be arbitrary and 
use induction on v, so that P(v) is “Su × v = (u × v) + v”.  The base case P(0) is 
“Su × 0 = (u × 0) + 0” and is easy to verify.  We assume Su × v = (u × v) + v 
and try to prove “Su × Sv = (u × Sv) + Sv”.  Working the LHS, Su × Sv = (Su × 
v) + Su, which is ((u × v) + v) + Su by the IH, and then (u × v) + (v + Su) by 
associativity of addition.  This is (u × v) + (Su + v) by commutativity of 
addition, (u × v) + (u + Sv) by a lemma above, ((u × v) + u) + Sv by 
associativity of addition again, and finally (u × Sv) + Sv by the definition of 
multiplication.



Finishing Commutativity of Multiplication

• We want to prove ∀u: ∀v: (u × v) = (v × u), so we let u be arbitrary and use 
induction on v.  Our statement P(v) is “(u × v) = (v × u)”.

• The base case P(0) is “(u × 0) = (0 × u)”, and this is exactly the conclusion of 
our first lemma.

• For the inductive step, our IH is P(v) or “(u × v) = (v × u)”.  We want to prove 
P(Sv), which is “(u × Sv) = (Sv × u)”.  The left-hand side is (u × v) + u by the 
definition of multiplication.  The right-hand side (v × u) + u by the second 
lemma, reversing the roles of u and v.  (We use Specification on the result.)

• Our IH now tells us that this form of the LHS is equal to this form of the RHS, 
completing the inductive step and thus completing the proof.



Associativity and the Distributive Law

• As in the textbook, we’ll start proving the associative law for multiplication, 
which is ∀u: ∀v: ∀w: u × (v × w) = (u × v) × w.  We let u and v be arbitrary, and 
use induction on w with P(w) as “u × (v × w) = (u × v) × w”.  The base case 
P(0) is “u × (v × 0) = (u × v) × 0”, which reduces to “0 = 0” by known rules.

• We assume P(w) and try to prove P(Sw) which is “u × (v × Sw) = (u × v) × Sw”. 

• The LHS reduces to u × ((v × w) + v) by the definition, which is (u × (v × w)) + 
(u × v) by distributivity, which unfortunately we haven’t proved yet.

• If we had done distributivity first, we could finish by using the IH to get ((u × v) 
× w) + (u × v), and then the definition of multiplication to get (u × v) × Sw, the 
desired right-hand side.

• This makes proving the Distributive Law a rather important exercise!


