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Variants of Mathematical Induction

• Not Starting at Zero

• Justifying the “Start Anywhere” Rule

• Induction on the Odds or the Evens

• Strong Induction

• The Law of Strong Induction

• Example: Existence of a Factorization

• Example: Making Change



Not Starting at Zero

• Last lecture we claimed “for any n, the n’th odd number is 2n-1” but didn’t 
prove this by induction.  The reason was that given our Law of Mathematical 
Induction, we would need to prove P(0), which says “the 0’th odd number is 
-1”, which doesn’t make much sense.

• Of course the statement P(1) says “the first odd number is 1”, which is true.  
And the inductive case is fine -- if we assume that the n’th odd number is 2n - 
1, then clearly the n+1’st odd number should be two greater, or (2n - 1) + 2 = 
2(n + 1) - 1.

• It seems reasonable to have a Law of Start Anywhere Induction that says “if 
you prove P(k) for any integer k, and prove ∀n: ((n ≥ k) ∧ P(n)) → P(n+1), you 
may conclude ∀n: (n ≥ k) → P(n)”.

• (A digression: Compare “∃x: x ≥ k ∧ ...” and “∀x: (x ≥ k) → ...” as on the test.)



Justifying the “Start Anywhere” Rule

• Using the intuition about dominoes, for example, the Start Anywhere Rule is 
just as convincing as the ordinary rule.  If we push over the k’th domino, and 
every domino at or after the k’th pushes over the next one, every domino after 
the k’th will eventually be pushed over.  But it would be nice to know that we 
don’t need a new axiom, so we will prove the Start Anywhere rule by ordinary 
mathematical induction.

• Suppose we have a predicate P(x), for integer x, and we have proved P(k) and 
∀x: ((x ≥ k) ∧ P(x)) → P(x+1) for some integer k.  For any natural n, we define a 
new predicate Q(n)  to be P(k+n).  

• Now we prove ∀n: Q(n) by ordinary induction.  Q(0) is the statement P(k), 
which we are given.  For the inductive step, we assume Q(n) which is P(k+n). 
We specify the other premise to x = k + n, giving the statement “(k + n ≥ k) ∧ 
P(k+n)) → P(k+n+1)”.  Since n is a natural, k + n ≥ k is true, so we get P(k+n
+1) which is the same as Q(n+1).  The ordinary induction is done.



More on the Start Anywhere Rule

• Having proved ∀n: Q(n) by ordinary induction, we can translate it back into 
terms of P as ∀n: P(k+n), which means that P is true for all arguments k or 
greater, which is the conclusion of the Start Anywhere Rule.

• Another way to think about this is that we are doing induction on an 
inductively defined type other than the naturals, in this case “integers that are 
≥ k”.  This type could be defined as what we get by starting from k and taking 
successors, and the fact that it contains nothing else is our induction rule.

• If k is positive, we could also prove the Start at k Rule by ordinary induction in 
another way.  Let Q(n) be the predicate “(n ≥ k) → P(n)”.  Then Q(0) is true, 
and we can prove ∀n: Q(n) → Q(n+1) by cases.  If n < k we can use Vacuous 
Proof.  If n = k we use our premise P(k).  And if n > k, Q(n) gives us P(n), and 
we can use Specification on the other premise to give us P(n+1).



Induction on the Odds or the Evens

• The first several odd perfect squares: 1, 9, 25, 49, and 81, are all congruent to 
1 modulo 8.  It’s easy to prove by modular arithmetic that every odd number 
satisfies n2 ≡ 1 (mod 8), but suppose we want to prove this by induction?

• We now know how to start at n = 1 rather than n = 0, but our inductive step 
poses a different problem.  We can’t say that n2 ≡ 1 for even n, because it isn’t 
true.  If we let P(n) be “if n is odd, then n2 ≡ 1 (mod 8)”, then P(n) is true for all 
n, but the inductive hypothesis does us no good in a proof because it is true 
vacuously -- it says nothing about n2 that we could use for (n+1)2.

• We can easily prove P(n) → P(n+2), however, and this looks like the correct 
inductive step for a statement about just the odds or just the evens.  We have 
another new induction rule: “If k is odd, P(k) is true, and ∀n: (P(n) ∧ (n is odd) 
∧ (n ≥ k)) → P(n+2) is true, then ∀n: ((n is odd) ∧ (n ≥ k)) → P(n) is true.”

• As before, we can prove the validity of this rule by ordinary induction.



Strong Induction

• The difficulty of ordinary induction in this last case was that the truth of P(n+1) 
depended on P(n-1) rather than on P(n), so that the premise of the ordinary 
inductive step P(n) → P(n+1) gave no help.

• If we return to the domino metaphor, all we actually care about is that every 
domino is knocked over, whether by the preceding domino or some other 
earlier one. 

• We can modify our Law of Induction to get a new Law of Strong Induction, 
which will handle these situations.  The new law will work in any situation 
where the old one will, so we could just use it automatically.  But in the many 
situations where ordinary induction works, using it makes for a clearer proof.  
So if we don’t recognize the need for strong induction immediately, we start 
an ordinary induction proof and convert it in midstream if necessary. 



The Law of Strong Induction

• The Law of Strong Induction is as follows:  Given a predicate P(n), define 
Q(n) to be the predicate ∀i: (i ≤ n) → P(i).  Then if we prove P(0) and ∀n: Q(n) 
→ P(n+1), we may conclude ∀n: P(n).

• The reason this is valid is that those two steps are exactly what we need for 
an ordinary induction proof of ∀n: Q(n).  Q(0) and P(0) are the same statement, 
and Q(n+1) is an equivalent statement to Q(n) ∧ P(n+1).  So Q(n) → P(n+1) 
allows us to derive Q(n) → Q(n+1), the inductive step of our ordinary 
induction.  (And of course ∀n: Q(n) implies ∀n:P(n).)  

• In practice, this means that if in the middle of an ordinary induction we decide 
that Q(n) would be a more useful inductive hypothesis than P(n), we just 
assume it, retroactively converting the proof to a strong induction.  There is 
nothing to be added to our conclusion, as proving P(n+1) also proves Q(n+1).



Example: Existence of a Factorization
• Let P(n) be the statement “n can be written as a product of prime numbers”.  

We have asserted that this P(n) is true for all positive n (0 cannot be written as 
such a product).  Our “proof” has been a recursive algorithm that generates a 
sequence of primes that multiply to n.  Now with Strong Induction (starting 
from 1 rather than 0) we can make this idea into a formal proof.

• We begin by noting that P(1) is true, since 1 is the product of an empty 
sequence of primes.  Now we let Q(n) be the statement “((i ≥ 1) ∧ (i ≤ n)) → 
P(i)”.  We can finish the strong induction by proving the strong inductive step 
∀n: ((n ≥ 1) ∧ Q(n)) → P(n+1).  (We need the “(n ≥ 1)” so we are not asked to 
deal with the false statement P(0).)

• But this proof is easy!  Let n be an arbitrary positive natural.  If n+1 is prime, 
P(n+1) is true because n+1 is the product of itself.  Otherwise, by the 
definition of primality, n+1 = a × b where a and b are each in the range from 2 
to n.  Since a ≤ n and b ≤ n, each can be written as a product of primes by 
the strong IH.  And multiplying these two sequences gives us one for n+1.



Example: Making Change
• Suppose I have $5 and $12 gift certificates, and I would like to be able to give 

someone a set of certificates for any integer number of dollars.  I clearly can’t 
do $4 or $11, but if the amount is large enough I should be able to do it.  By 
trial and error (or more cleverly) you can show that $43 is the last bad amount.

• Let P(n) be the statement “$n can be made with $5’s and $12’s”.  I’d like to 
prove ∀n: (n ≥ 44) → P(n) by strong induction, starting with P(44).  It’s easy to 
prove ∀n: P(n) → P(n+5), which helps with the strong inductive step, namely 
∀n: Q(n) → P(n+1), where Q(n) is the statement ∀i:((i ≥ 44) ∧ (i ≤ n)) → P(i).  

• So let n be arbitrary and assume Q(n).  If n ≥ 48, Q(n) includes P(n-4), and I 
can prove P(n+1) from P(n-4).  But there are the cases of P(45), P(46), P(47), 
and P(48) which I have to do separately.  One way to think of this is that with 
an inductive step of P(n) → P(n+5), I need five base cases.

• If my sum proving P(n) had at least two $12’s, I could replace them with five 
$5’s and get the inductive step for an ordinary induction.


