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Predicates and Relations

• Statements That Include Variables

• Signatures and Templates

• Predicates Viewed as Boolean Functions

• Sets of Pairs and Tuples

• Storing Relations in a Computer

• Viewing Functions as Relations



Statements that Include Variables

• In propositional logic we view the atomic 
statements as either true or false -- we do 
not consider semantic relationships between 
statements.

• There is a similarity between “Cardie is a 
terrier” and “Biscuit is a terrier” that we may 
want to capture -- if we are told that “all 
terriers are dogs” then both of the 
statements will have consequences.  



Predicates
• Rather than just give a name to each 

proposition, we might write T(c) and T(b), 
using the predicate T(x) to mean “x is a 
terrier”.  Then our new statement would be 
that “T(x) → D(x)” is always true (where 
D(x) means “x is a dog”).

• Formally a predicate is a statement that 
would become a proposition if the value of 
some variable is supplied.

• The variables needed to define the meaning 
of the predicate are called free variables.



Signatures and Templates

• Methods in Java have signatures that indicate 
what arguments they take, and in what order.  If 
we define int foo (int x, String w), 
we know that the method foo takes two 
arguments, the first an int and the second a 
String.  

• If we then make a method call foo (7, 
“Cardie”), we know that the interpreter will 
run the code of foo, replacing occurrences of x 
by 7 and occurrences of w by “Cardie”.



Signatures and Templates
• Predicates also have signatures that indicate how 

many free variables there are, what types they are, 
and what order they come in.

• A predicate also has a template, which is a 
statement about the free variables.  (Often the types 
of the free variables are made clear in the template.)  
When we evaluate the predicate for particular 
objects, we substitute them for the corresponding 
free variables in the template and thus get a 
proposition that is true or false.  We can think of 
the predicate as a function with boolean output.



Predicates as Boolean Functions

• In mathematics, we define general functions in 
the same way.  In a calculus course, we might 
say “let f(x) be 3x2 + 6x + 2” and then later 
talk about f(x + ∆x) by which we mean 3(x + 
∆x)2 + 6(x + ∆x) + 2.  

• The signature of this function is “x”, a real 
variable, and the template is the expression 
3x2 + 6x + 2.



Return Values of Predicates

• A mathematical or Java function may have any 
return type, but predicates always return 
booleans.  Thus if the template involves 
numbers, there will also be a boolean 
operator like = or ≤.  

• In fact these operators are themselves 
predicates, although we use infix notation 
rather then the usual functional notation. (For 
the latter we might write x ≤ y as LE(x, y).)



More Predicates

•  When we write “x < y”, we are giving an 
expression that will become a boolean once 
the values of x and y are supplied.  Operators 
like < are overloaded for different 
argument types.

• Set builder notation involves a predicate, e.g., 
{x: x is a terrier}.  The set is the collection of 
values (from the correct type) that make the 
predicate true.



Ordered Pairs

• If A and B are any data types, we can define 
ordered pairs of the form (a, b), where a is 
from A and b is from B.  The pair is ordered 
because (a, b) is different from (b, a).  (In fact 
(b, a) is not an ordered pair of that type, 
unless A = B.)  

• Two ordered pairs (a, b) and (c, d) are equal if 
and only if a = c and b = d.  



Direct Products

• We can similarly make ordered triples, 
ordered 4-tuples, or ordered k-tuples.  A 
point in three-dimensional Euclidean space is 
represented by an ordered triple where each 
element is a real number, such as (2, π, -4.6).

• The set of all ordered pairs with first element 
from A and second element from B is called A 
× B, the direct product of A and B.  
Similarly we can have direct products of more 
than two sets -- Euclidean 3-space is the 
product ℝ × ℝ × ℝ.



Clicker Question #1
• Let D be the set {Biscuit, Cardie, Duncan} and let 

B be the set {Golden, Terrier}.  Which of these 
sets is the direct product D × B?

• (a) {Biscuit, Cardie, Duncan, Golden, Terrier}

• (b) {(Biscuit, Golden), (Biscuit, Terrier), (Cardie, 
Golden), (Cardie, Terrier), (Duncan, Golden), 
(Duncan, Terrier)}

• (c) {(Cardie, Golden), (Duncan, Terrier)}

• (d) {(Biscuit, Golden), (Cardie, Golden), (Duncan, 
Golden), (Cardie, Terrier), (Duncan, Terrier)}



Answer #1

• Let D be the set {Biscuit, Cardie, Duncan} and let 
B be the set {Golden, Terrier}.  Which of these 
sets is the direct product D × B?

• (a) {Biscuit, Cardie, Duncan, Golden, Terrier}

• (b) {(Biscuit, Golden), (Biscuit, Terrier), (Cardie, 
Golden), (Cardie, Terrier), (Duncan, Golden), (Duncan, 
Terrier)}

• (c) {(Cardie, Golden), (Duncan, Terrier)}

• (d) {(Biscuit, Golden), (Cardie, Golden), (Duncan, 
Golden), (Cardie, Terrier), (Duncan, Terrier)}



Pairs in Predicates

• Let’s let D be a set of dogs and C a set of 
colors.  Let the predicate P (d, c), with 
signature (D, C), have the template “Dog d 
has color c”.  

• Now consider the direct product D × C.  An 
element (d, c) of D × C is exactly what we 
need to supply to determine whether P is 
true or false.  (We could think of P as having 
one free variable, whose type is D × C.)



Relations

• The relation corresponding to P is the set 
{(d, c): P(d, c) is true} -- the set of pairs that 
make P true.  Any subset of D × C is a 
relation “from D to C”.  

• Every predicate has a corresponding relation, 
and every relation has a corresponding 
predicate.  For example, if X ⊆ D × C, we can 
define a predicate Px(d, c) with template “(d, 
c) ∈ X”.



Clicker Question #2

• Let D be a set of dogs and T be a set of toys.  
Let the predicate L(d, t) have template “dog d 
likes toy t”.  What set is the relation 
corresponding to this predicate?

• (a) the set of all dogs that like at least one toy

• (b) the set of all dog-toy pairs such that the 
dog in the pair likes the toy in the pair

• (c) the set of all toys that the dog d likes

• (d) the direct product D × T 



Answer #2

• Let D be a set of dogs and T be a set of toys.  
Let the predicate L(d, t) have template “dog d 
likes toy t”.  What set is the relation 
corresponding to this predicate?

• (a) the set of all dogs that like at least one toy

• (b) the set of all dog-toy pairs such that the dog 
in the pair likes the toy in the pair

• (c) the set of all toys that the dog d likes

• (d) the direct product D × T 



Arity of Relations

• A relation is unary if it is just a subset of a 
single set, binary if it is a set of ordered 
pairs, ternary if it is a set of ordered 
triples, and in general k-ary if it is a set of 
ordered k-tuples.  Similarly we have unary, 
binary,..., k-ary predicates depending on their 
number of free variables.

• The arity of a relation or predicates is its 
number of free variables.



Storing Relations on Computers

• There are three basic ways to store a 
predicate/relation on a computer.

• We can have an array of boolean values 
where for every possible choice of the 
predicate’s free variables, there is a boolean 
saying whether that choice is in the relation.

• We can have a boolean method that 
takes the values as arguments and computes 
a boolean telling whether the k-tuple of 
arguments is in the relation.



Storing Relations on Computers

• We can have a list of the tuples in the 
relation, so that we test the predicate by 
seeing whether the particular tuple is in the 
list.

• There are tradeoffs among these three 
methods.  For example, the boolean array is 
generally the fastest but takes the most 
storage.



Clicker Question #3

• Let S be the set of 50 U.S. states, and let F be a 
set of 100 types of fireworks.  Let the relation 
L(f, s) have the template “firework f is legal in 
state s”.  If I want to store this relation in a 
boolean array, how many entries do I need?

• (a) 100

• (b) 150

• (c) 5000

• (d) 25000



Answer #3

• Let S be the set of 50 U.S. states, and let F be a 
set of 100 types of fireworks.  Let the relation 
L(f, s) have the template “firework f is legal in 
state s”.  If I want to store this relation in a 
boolean array, how many entries do I need?

• (a) 100

• (b) 150

• (c) 5000

• (d) 25000



Viewing Functions as Relations

• In computing, we usually think of a function 
from A to B as an entity that takes input of 
some particular type A and produces 
output of some particular type B.  

• The formal mathematical definition of 
“function”, however,  is different.  

• In calculus, they may have tried to impress 
upon you that a function from ℝ to ℝ is a 
set of ordered pairs of real numbers. 



Viewing Relations as Functions

• A curve in Cartesian coordinates may (y = 
x2) or may not (x = y2) represent a function, 
depending on whether it gives a unique 
output value for every input value.  If it is not 
a function it is “just a relation”.

• This is precisely the language we are using 
here.  The set of points on the graph is a set 
of ordered pairs in ℝ × ℝ, a binary relation. 



Functions in Mathematics

•  In mathematics a relation from A to B is 
called a function from A to B if for every 
element a of A, there is exactly one element b 
such that (a, b) is in the relation.

• Remember that “exactly one” means both “at 
least one” and “not more than one”.  Given 
an input value a, there must be some value b 
such that (a, b) is in the relation, but there 
may not be two such values.


