
CMPSCI 250: Introduction to
Computation

Lecture #6: Predicates and Relations
David Mix Barrington
16 September 2013

Predicates and Relations

• Statements That Include Variables

• Signatures and Templates

• Predicates Viewed as Boolean Functions

• Sets of Pairs and Tuples

• Storing Relations in a Computer

• Viewing Functions as Relations

Statements that Include Variables

• In propositional logic we view the atomic
statements as either true or false -- we do
not consider semantic relationships between
statements.

• There is a similarity between “Cardie is a
terrier” and “Biscuit is a terrier” that we may
want to capture -- if we are told that “all
terriers are dogs” then both of the
statements will have consequences.

Predicates
• Rather than just give a name to each

proposition, we might write T(c) and T(b),
using the predicate T(x) to mean “x is a
terrier”. Then our new statement would be
that “T(x) → D(x)” is always true (where
D(x) means “x is a dog”).

• Formally a predicate is a statement that
would become a proposition if the value of
some variable is supplied.

• The variables needed to define the meaning
of the predicate are called free variables.

Signatures and Templates

• Methods in Java have signatures that indicate
what arguments they take, and in what order. If
we define int foo (int x, String w),
we know that the method foo takes two
arguments, the first an int and the second a
String.

• If we then make a method call foo (7,
“Cardie”), we know that the interpreter will
run the code of foo, replacing occurrences of x
by 7 and occurrences of w by “Cardie”.

Signatures and Templates
• Predicates also have signatures that indicate how

many free variables there are, what types they are,
and what order they come in.

• A predicate also has a template, which is a
statement about the free variables. (Often the types
of the free variables are made clear in the template.)
When we evaluate the predicate for particular
objects, we substitute them for the corresponding
free variables in the template and thus get a
proposition that is true or false. We can think of
the predicate as a function with boolean output.

Predicates as Boolean Functions

• In mathematics, we define general functions in
the same way. In a calculus course, we might
say “let f(x) be 3x2 + 6x + 2” and then later
talk about f(x + ∆x) by which we mean 3(x +
∆x)2 + 6(x + ∆x) + 2.

• The signature of this function is “x”, a real
variable, and the template is the expression
3x2 + 6x + 2.

Return Values of Predicates

• A mathematical or Java function may have any
return type, but predicates always return
booleans. Thus if the template involves
numbers, there will also be a boolean
operator like = or ≤.

• In fact these operators are themselves
predicates, although we use infix notation
rather then the usual functional notation. (For
the latter we might write x ≤ y as LE(x, y).)

More Predicates

• When we write “x < y”, we are giving an
expression that will become a boolean once
the values of x and y are supplied. Operators
like < are overloaded for different
argument types.

• Set builder notation involves a predicate, e.g.,
{x: x is a terrier}. The set is the collection of
values (from the correct type) that make the
predicate true.

Ordered Pairs

• If A and B are any data types, we can define
ordered pairs of the form (a, b), where a is
from A and b is from B. The pair is ordered
because (a, b) is different from (b, a). (In fact
(b, a) is not an ordered pair of that type,
unless A = B.)

• Two ordered pairs (a, b) and (c, d) are equal if
and only if a = c and b = d.

Direct Products

• We can similarly make ordered triples,
ordered 4-tuples, or ordered k-tuples. A
point in three-dimensional Euclidean space is
represented by an ordered triple where each
element is a real number, such as (2, π, -4.6).

• The set of all ordered pairs with first element
from A and second element from B is called A
× B, the direct product of A and B.
Similarly we can have direct products of more
than two sets -- Euclidean 3-space is the
product ℝ × ℝ × ℝ.

Clicker Question #1
• Let D be the set {Biscuit, Cardie, Duncan} and let

B be the set {Golden, Terrier}. Which of these
sets is the direct product D × B?

• (a) {Biscuit, Cardie, Duncan, Golden, Terrier}

• (b) {(Biscuit, Golden), (Biscuit, Terrier), (Cardie,
Golden), (Cardie, Terrier), (Duncan, Golden),
(Duncan, Terrier)}

• (c) {(Cardie, Golden), (Duncan, Terrier)}

• (d) {(Biscuit, Golden), (Cardie, Golden), (Duncan,
Golden), (Cardie, Terrier), (Duncan, Terrier)}

Answer #1

• Let D be the set {Biscuit, Cardie, Duncan} and let
B be the set {Golden, Terrier}. Which of these
sets is the direct product D × B?

• (a) {Biscuit, Cardie, Duncan, Golden, Terrier}

• (b) {(Biscuit, Golden), (Biscuit, Terrier), (Cardie,
Golden), (Cardie, Terrier), (Duncan, Golden), (Duncan,
Terrier)}

• (c) {(Cardie, Golden), (Duncan, Terrier)}

• (d) {(Biscuit, Golden), (Cardie, Golden), (Duncan,
Golden), (Cardie, Terrier), (Duncan, Terrier)}

Pairs in Predicates

• Let’s let D be a set of dogs and C a set of
colors. Let the predicate P (d, c), with
signature (D, C), have the template “Dog d
has color c”.

• Now consider the direct product D × C. An
element (d, c) of D × C is exactly what we
need to supply to determine whether P is
true or false. (We could think of P as having
one free variable, whose type is D × C.)

Relations

• The relation corresponding to P is the set
{(d, c): P(d, c) is true} -- the set of pairs that
make P true. Any subset of D × C is a
relation “from D to C”.

• Every predicate has a corresponding relation,
and every relation has a corresponding
predicate. For example, if X ⊆ D × C, we can
define a predicate Px(d, c) with template “(d,
c) ∈ X”.

Clicker Question #2

• Let D be a set of dogs and T be a set of toys.
Let the predicate L(d, t) have template “dog d
likes toy t”. What set is the relation
corresponding to this predicate?

• (a) the set of all dogs that like at least one toy

• (b) the set of all dog-toy pairs such that the
dog in the pair likes the toy in the pair

• (c) the set of all toys that the dog d likes

• (d) the direct product D × T

Answer #2

• Let D be a set of dogs and T be a set of toys.
Let the predicate L(d, t) have template “dog d
likes toy t”. What set is the relation
corresponding to this predicate?

• (a) the set of all dogs that like at least one toy

• (b) the set of all dog-toy pairs such that the dog
in the pair likes the toy in the pair

• (c) the set of all toys that the dog d likes

• (d) the direct product D × T

Arity of Relations

• A relation is unary if it is just a subset of a
single set, binary if it is a set of ordered
pairs, ternary if it is a set of ordered
triples, and in general k-ary if it is a set of
ordered k-tuples. Similarly we have unary,
binary,..., k-ary predicates depending on their
number of free variables.

• The arity of a relation or predicates is its
number of free variables.

Storing Relations on Computers

• There are three basic ways to store a
predicate/relation on a computer.

• We can have an array of boolean values
where for every possible choice of the
predicate’s free variables, there is a boolean
saying whether that choice is in the relation.

• We can have a boolean method that
takes the values as arguments and computes
a boolean telling whether the k-tuple of
arguments is in the relation.

Storing Relations on Computers

• We can have a list of the tuples in the
relation, so that we test the predicate by
seeing whether the particular tuple is in the
list.

• There are tradeoffs among these three
methods. For example, the boolean array is
generally the fastest but takes the most
storage.

Clicker Question #3

• Let S be the set of 50 U.S. states, and let F be a
set of 100 types of fireworks. Let the relation
L(f, s) have the template “firework f is legal in
state s”. If I want to store this relation in a
boolean array, how many entries do I need?

• (a) 100

• (b) 150

• (c) 5000

• (d) 25000

Answer #3

• Let S be the set of 50 U.S. states, and let F be a
set of 100 types of fireworks. Let the relation
L(f, s) have the template “firework f is legal in
state s”. If I want to store this relation in a
boolean array, how many entries do I need?

• (a) 100

• (b) 150

• (c) 5000

• (d) 25000

Viewing Functions as Relations

• In computing, we usually think of a function
from A to B as an entity that takes input of
some particular type A and produces
output of some particular type B.

• The formal mathematical definition of
“function”, however, is different.

• In calculus, they may have tried to impress
upon you that a function from ℝ to ℝ is a
set of ordered pairs of real numbers.

Viewing Relations as Functions

• A curve in Cartesian coordinates may (y =
x2) or may not (x = y2) represent a function,
depending on whether it gives a unique
output value for every input value. If it is not
a function it is “just a relation”.

• This is precisely the language we are using
here. The set of points on the graph is a set
of ordered pairs in ℝ × ℝ, a binary relation.

Functions in Mathematics

• In mathematics a relation from A to B is
called a function from A to B if for every
element a of A, there is exactly one element b
such that (a, b) is in the relation.

• Remember that “exactly one” means both “at
least one” and “not more than one”. Given
an input value a, there must be some value b
such that (a, b) is in the relation, but there
may not be two such values.

