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Rules for Propositional Proofs

• Equations in Algebra

• Equational Sequence Proofs

• Where Do the Rules Come From?

• Deductive Sequence Proofs

• When Can You Substitute?

• Some Equational Rules

• Some Implication Rules



Equations in Algebra

• Since your high school mathematics career you 
have been carrying out a sort of mathematical 
proof.  In algebra, you often show two things 
(such as polynomials) to be equal by a series of 
steps, each justified by a rule:

(x + 3)2 =
(x + 3)(x + 3) =      Definition of squaring
x(x + 3) + 3(x + 3) = Distributive law
(x2 + 3x) + (3x + 9) = Distributive law
x2 + (3x + 3x) + 9 =   Associative law
x2 + 6x + 9



Algebraic Derivations

• If every step is justified, the expressions on 
every line are all equal, and thus the first one 
is equal to last one.  

• If you make a mistake at any point in the 
process, of course, the derivation is invalid 
and you might well derive something that is 
false.

• You need to know the rules, and make good 
choices as to what rules to use.



Equational Sequence Proofs

• An equational sequence proof is 
exactly the same thing with compound 
propositions -- a sequence of expressions, 
each of which comes from the previous one 
by using a rule.  

• We have to learn new rules, which we’ll list at 
the end of this lecture (see also section 1.7 of 
the book).  Next lecture we’ll talk more 
about the strategies we might use to choose 
the right rules to use.



Equational Sequence Example

• Here’s an example of an equational sequence 
proof, for the statement we proved by truth 
tables in the last lecture:

(x ∧ ¬y) ∧ (y ∧ ¬x) ↔
x ∧ (¬y ∧ y) ∧ ¬x ↔   Associativity of ∧
x ∧ ¬(y ∨ ¬y) ∧ ¬x ↔  DeMorgan ∧ to ∨
x ∧ ¬1 ∧ ¬x ↔         Excluded Middle
0                     Left and Right 
                      0 rules for ∧



Where Do Rules Come From?

• Any tautology may be used as a rule.  If we 
want to use a rule repeatedly, it is worth the 
time to verify it with a truth table and then 
remember it.

• In particular, if we have a tautology of the 
form P ↔ Q, where P and Q are compound 

propositions using some atomic variables, we 
can substitute other compound 
propositions for the variables, and still get a 
tautology.  This is often how we use a rule.



Clicker Question #1

• In a step of an equational proof we can 
change P to Q if P and Q are equivalent, 
meaning that P ↔ Q is a tautology.  Which of 

these statements is equivalent to x ∧ ¬y?

• (a) ¬x ∨ y

• (b) ¬y ∧ x

• (c) x → y

• (d) ¬x ∧ y



Answer #1

• In a step of an equational proof we can 
change P to Q if P and Q are equivalent, 
meaning that P ↔ Q is a tautology.  Which of 

these statements is equivalent to x ∧ ¬y?

• (a) ¬x ∨ y

• (b) ¬y ∧ x

• (c) x → y

• (d) ¬x ∧ y



Substitution Example

• For example, since (x ∧ y) ↔ (y ∧ x) is a 

tautology, we can substitute a ⊕ b for x and b 
→ (a ∨ c) for y.  

• In this way we get a new tautology,  ((a ⊕ b) 
∧ (b → (a ∨ c)) ↔ ((b → (a ∨ c)) ∧ (a ⊕ b)).  

So in a step of a proof, we could substitute 
one side of this equivalence for the other.



Deductive Sequence Proofs

• We often want to verify tautologies of the 
form P → C, where P is the premise and C is 
the conclusion.  

• We can do this with a deductive sequence 
proof, which is a sequence of compound 
propositions where each one implies the 
next.  

• If we have a rule X → Y, then if we have X in 
one step of our proof we can take Y as the 
next one. 



Deductive Sequence Proofs

• We can also use multiple previous statements 
to justify a new step.  If we have A, B, and C as 
previous steps, for example, and (A ∧ B ∧ C) → 
D is a rule, we can take D as our next step.

• If the premise (our first step) is true, the 
definition of → tells us that each of the other 
steps must be true, and thus that the conclusion 
is true.

• Deductive sequence steps are not reversible in 
the way equivalences are.



Deductive Sequence Example

• In this derivation we begin with the premise x 
∧ (x → y) and derive the conclusion y.  As it 
happens, each rule we use except the last one 
is an equivalence rule.  

• This is like an inequality proof in algebra, 
where we may use both = and ≤ steps to get 
a ≤ conclusion.

• We will have proved (x ∧ (x → y)) → y, the 
Modus Ponens rule.



Deductive Sequence Example

• This is equational until the last step:

x ∧ (x ! y) ↔
x ∧ (¬x ∨ y) ↔         Definition of !
(x ∧ ¬x) ∨ (x ∧ y) ↔   Distribute ∧ over ∨
¬(¬x ∨ x) ∨ (x ∧ y) ↔  DeMorgan ∧ to ∨
¬1 ∨ (x ∧ y) ↔         Excluded Middle
0 ∨ (x ∧ y) ↔          ¬1 = 0
x ∧ y  !                Left Identity for ∨
y                       Right Separation



Clicker Question #2

• We haven’t learned the rules yet, but we can 
go from P to Q if Q must be true when P is. 
Which of these statements follows from x?

• (a) (y ∧ z) ∨ x

• (b) (y ∧ z) ⊕ x

• (c) (y ∧ z) ∧ x

• (d) (y ∧ z) ↔ x



Answer #2

• We haven’t learned the rules yet, but we can 
go from P to Q if Q must be true when P is. 
Which of these statements follows from x?

• (a) (y ∧ z) ∨ x

• (b) (y ∧ z) ⊕ x

• (c) (y ∧ z) ∧ x

• (d) (y ∧ z) ↔ x



When Can You Substitute?

• If P ↔ Q is a tautology, then we can replace P 

by Q in any context.  This is because P and Q 
are true in exactly the same lines of the truth 
table.

• If P → Q is a tautology, we know that Q is 
true in every line of the truth table where P 
is true, but it may also be true in additional 
lines where P is false.



When Can You Substitute?

• If we know P → Q, it’s true that (P ∧ R) → 
(Q ∧ R) and that (P ∨ R) → (Q ∨ R).  

• That means that we can change a P to a Q in 
a step of a derivation if the entire statement 
is built from P or Q by ∧ and ∨ operations.

• For example, from P → Q we could take the 
statement (P ∧ R) ∨ (S ∧ P) and derive (Q ∧ 
R) ∨ (S ∧ Q).



When Can You Substitute?

• But look at the statements P ⊕ R and Q ⊕ R.  
Even if P → Q is true, we could have a 
situation where P ⊕ R is true (because P is 
false and R is true) but yet Q ⊕ R is false 
(because both Q and R are true).  So (P ⊕ R) 
→ (Q ⊕ R) fails.

• The safest thing is to apply deductive rules 
only on the statement as a whole.



Some Equational Rules

• The operators ∧, ∨, and ⊕ are 
commutative (a ∧ b ↔ b ∧ a) and 

associative (a ∧ (b ∧ c) ↔ (a ∧ b) ∧ c).  But 

they are not associative with each other -- for 
example (a ∧ b) ∨ c ↔ a ∧ (b ∨ c) is not valid.  

• We also have special rules for these 
operator’s behavior with 0 and 1.



Equational Rules: Definitions

• We can translate x → y, x ↔ y, and x ⊕ y as 

(¬x ∨ y), (x ∧ y) ∨ (¬x ∧ ¬y), and (x ∧ ¬y) ∨ 
(¬x ∧ y) respectively.  

• In addition, x ↔ y  translates to (x → y) ∧ (y 

→ x).

• These rules let us put things either mostly in 
terms of → or mostly in terms of ∧, ∨, and ¬.



More Equational Rules

• Four equivalence rules deal with ¬: Excluded 
Middle says that (x ∨ ¬x) ↔ 1, the Double 

Negative rule says that ¬¬x ↔ x, and the two 

DeMorgan rules say that ¬(x ∧ y) ↔ (¬x ∨ 

¬y) and ¬(x ∨ y) ↔ (¬x ∧ ¬y).

•  The Contrapositive Rule lets us switch 
between x → y and ¬y → ¬x.  Note that neither 
y → x (converse) nor ¬x → ¬y (inverse) is 
equivalent to x → y.



Clicker Question #3

• Let P be the statement (x ∨ y) → (z ∧ y).  
Which of these statements is equivalent to P 
by the Contrapositive Rule?

• (a) (¬z ∨ ¬y) → (¬x ∧ ¬y)

• (b) (z ∧ y) → (x ∨ y)

• (c) (¬x ∧ ¬y) → (¬z ∨ ¬y)

• (d) (¬z ∧ ¬y) → (¬x ∨ ¬y)



Answer #3

• Let P be the statement (x ∨ y) → (z ∧ y).  
Which of these statements is equivalent to P 
by the Contrapositive Rule?

• (a) (¬z ∨ ¬y) → (¬x ∧ ¬y)

• (b) (z ∧ y) → (x ∨ y)

• (c) (¬x ∧ ¬y) → (¬z ∨ ¬y)

• (d) (¬z ∧ ¬y) → (¬x ∨ ¬y)



Some Implication Rules

• The two Joining Rules give us x ∨ y and y 
∨ x from x.

• The two Separation Rules give us either 
x or y from x ∧ y.

• We can derive x → y from either ¬x 
(Vacuous Proof) or y (Trivial Proof).

• From ¬x → 0 we can derive x by 
Contradiction.



More Implication Rules

• From x → y and y → z we can derive x → z 
by Hypothetical Syllogism.

• From (x ∧ y) → z and (x ∧ ¬y) → z we can 
derive x → z by Proof By Cases.

• Of course all these rules may be verified by 
truth tables.


