CMPSCI 250: Introduction to Computation

Lecture \#4: Rules for Propositional Proofs David Mix Barrington
II September 2013

Rules for Propositional Proofs

- Equations in Algebra
- Equational Sequence Proofs
- Where Do the Rules Come From?
- Deductive Sequence Proofs
- When Can You Substitute?
- Some Equational Rules
- Some Implication Rules

Equations in Algebra

- Since your high school mathematics career you have been carrying out a sort of mathematical proof. In algebra, you often show two things (such as polynomials) to be equal by a series of steps, each justified by a rule:
$(x+3)^{2}=$
$(x+3)(x+3)=\quad$ Definition of squaring
$x(x+3)+3(x+3)=$ Distributive law
$\left(x^{2}+3 x\right)+(3 x+9)=$ Distributive law
$x^{2}+(3 x+3 x)+9=$ Associative law
$x^{2}+6 x+9$

Algebraic Derivations

- If every step is justified, the expressions on every line are all equal, and thus the first one is equal to last one.
- If you make a mistake at any point in the process, of course, the derivation is invalid and you might well derive something that is false.
- You need to know the rules, and make good choices as to what rules to use.

Equational Sequence Proofs

- An equational sequence proof is exactly the same thing with compound propositions -- a sequence of expressions, each of which comes from the previous one by using a rule.
- We have to learn new rules, which we'll list at the end of this lecture (see also section I. 7 of the book). Next lecture we'll talk more about the strategies we might use to choose the right rules to use.

Equational Sequence Example

- Here's an example of an equational sequence proof, for the statement we proved by truth tables in the last lecture:

```
(x ^ ᄀy) ^ (y ^ ᄀx) ↔
x ^ ( ᄀy ^ y) ^ ᄀx ↔ Associativity of ^
x ^ ᄀ(y \vee ᄀy) ^ ᄀx ↔ DeMorgan ^ to \vee
x ^ ᄀ1 ^ ᄀx ↔ Excluded Middle
0 Left and Right
    O rules for ^
```


Where Do Rules Come From?

- Any tautology may be used as a rule. If we want to use a rule repeatedly, it is worth the time to verify it with a truth table and then remember it.
- In particular, if we have a tautology of the form $\mathrm{P} \leftrightarrow \mathrm{Q}$, where P and Q are compound propositions using some atomic variables, we can substitute other compound propositions for the variables, and still get a tautology. This is often how we use a rule.

Clicker Question \#I

- In a step of an equational proof we can change P to Q if P and Q are equivalent, meaning that $\mathrm{P} \leftrightarrow \mathrm{Q}$ is a tautology. Which of these statements is equivalent to $x \wedge \neg y$?
- (a) $\neg x \vee y$
- (b) $\neg y \wedge x$
- (c) $x \rightarrow y$
- (d) $\neg x \wedge y$

Answer \#I

- In a step of an equational proof we can change P to Q if P and Q are equivalent, meaning that $\mathrm{P} \leftrightarrow \mathrm{Q}$ is a tautology. Which of these statements is equivalent to $x \wedge \neg y$?
- (a) $\neg x \vee y$
- (b) $\urcorner y \wedge x$
- (c) $x \rightarrow y$
- (d) $\neg x \wedge y$

Substitution Example

- For example, since $(x \wedge y) \leftrightarrow(y \wedge x)$ is a tautology, we can substitute $a \oplus b$ for x and b $\rightarrow(a \vee c)$ for y.
- In this way we get a new tautology, $((a \oplus b)$ $\wedge(\mathrm{b} \rightarrow(\mathrm{a} \vee \mathrm{c})) \leftrightarrow((\mathrm{b} \rightarrow(\mathrm{a} \vee \mathrm{c})) \wedge(\mathrm{a} \oplus \mathrm{b}))$. So in a step of a proof, we could substitute one side of this equivalence for the other.

Deductive Sequence Proofs

- We often want to verify tautologies of the form $P \rightarrow C$, where P is the premise and C is the conclusion.
- We can do this with a deductive sequence proof, which is a sequence of compound propositions where each one implies the next.
- If we have a rule $X \rightarrow Y$, then if we have X in one step of our proof we can take Y as the next one.

Deductive Sequence Proofs

- We can also use multiple previous statements to justify a new step. If we have A, B, and C as previous steps, for example, and $(A \wedge B \wedge C) \rightarrow$ D is a rule, we can take D as our next step.
- If the premise (our first step) is true, the definition of \rightarrow tells us that each of the other steps must be true, and thus that the conclusion is true.
- Deductive sequence steps are not reversible in the way equivalences are.

Deductive Sequence Example

- In this derivation we begin with the premise x $\wedge(x \rightarrow y)$ and derive the conclusion y. As it happens, each rule we use except the last one is an equivalence rule.
- This is like an inequality proof in algebra, where we may use both $=$ and \leq steps to get $\mathrm{a} \leq$ conclusion.
- We will have proved $(x \wedge(x \rightarrow y)) \rightarrow y$, the Modus Ponens rule.

Deductive Sequence Example

- This is equational until the last step:
$\mathrm{x} \wedge(\mathrm{x} \rightarrow \mathrm{y}) \leftrightarrow$
$x \wedge(\neg \mathrm{x} \vee \mathrm{y}) \leftrightarrow \quad$ Definition of \rightarrow
$(x \wedge \neg x) \vee(x \wedge y) \leftrightarrow \quad$ Distribute \wedge over \vee
$\neg(\neg \mathrm{x} \vee \mathrm{x}) \vee(\mathrm{x} \wedge \mathrm{y}) \leftrightarrow$ DeMorgan \wedge to \vee
$\neg 1 \vee(x \wedge y) \leftrightarrow \quad$ Excluded Middle
$0 \vee(\mathrm{x} \wedge \mathrm{y}) \leftrightarrow \quad \neg 1=0$
$\mathrm{x} \wedge \mathrm{y} \rightarrow \quad$ Left Identity for v
y Right Separation

Clicker Question \#2

- We haven't learned the rules yet, but we can go from P to Q if Q must be true when P is. Which of these statements follows from x ?
- (a) $(y \wedge z) \vee x$
- (b) $(y \wedge z) \oplus x$
- (c) $(y \wedge z) \wedge x$
- (d) $(y \wedge z) \leftrightarrow x$

Answer \#2

- We haven't learned the rules yet, but we can go from P to Q if Q must be true when P is. Which of these statements follows from x ?
- (a) $(y \wedge z) \vee x$
- (b) $(y \wedge z) \oplus x$
- (c) $(y \wedge z) \wedge x$
- (d) $(y \wedge z) \leftrightarrow x$

When Can You Substitute?

- If $P \leftrightarrow Q$ is a tautology, then we can replace P by Q in any context. This is because P and Q are true in exactly the same lines of the truth table.
- If $P \rightarrow Q$ is a tautology, we know that Q is true in every line of the truth table where P is true, but it may also be true in additional lines where P is false.

When Can You Substitute?

- If we know $P \rightarrow Q$, it's true that $(P \wedge R) \rightarrow$ $(Q \wedge R)$ and that $(P \vee R) \rightarrow(Q \vee R)$.
- That means that we can change a P to a Q in a step of a derivation if the entire statement is built from P or Q by \wedge and \vee operations.
- For example, from $P \rightarrow Q$ we could take the statement $(P \wedge R) \vee(S \wedge P)$ and derive $(Q \wedge$ $R) \vee(S \wedge Q)$.

When Can You Substitute?

- But look at the statements $\mathrm{P} \oplus \mathrm{R}$ and $\mathrm{Q} \oplus \mathrm{R}$.

Even if $P \rightarrow Q$ is true, we could have a situation where $P \oplus R$ is true (because P is false and R is true) but yet $Q \oplus R$ is false (because both Q and R are true). So ($P \oplus R$) $\rightarrow(Q \oplus R)$ fails.

- The safest thing is to apply deductive rules only on the statement as a whole.

Some Equational Rules

- The operators \wedge, \vee, and \oplus are commutative $(a \wedge b \leftrightarrow b \wedge a)$ and associative $(a \wedge(b \wedge c) \leftrightarrow(a \wedge b) \wedge c)$. But they are not associative with each other -- for example $(a \wedge b) \vee c \leftrightarrow a \wedge(b \vee c)$ is not valid.
- We also have special rules for these operator's behavior with 0 and I.

Equational Rules: Definitions

- We can translate $x \rightarrow y, x \leftrightarrow y$, and $x \oplus y$ as $(\neg x \vee y),(x \wedge y) \vee(\neg x \wedge \neg y)$, and $(x \wedge \neg y) \vee$ ($\neg x \wedge y)$ respectively.
- In addition, $x \leftrightarrow y$ translates to $(x \rightarrow y) \wedge(y$
$\rightarrow \mathrm{x})$.
- These rules let us put things either mostly in terms of \rightarrow or mostly in terms of \wedge, \vee, and \neg.

More Equational Rules

- Four equivalence rules deal with \neg : Excluded Middle says that $(x \vee \neg x) \leftrightarrow I$, the Double
Negative rule says that $\neg \neg x \leftrightarrow x$, and the two DeMorgan rules say that $\neg(x \wedge y) \leftrightarrow(\neg x \vee$ $\neg y)$ and $\neg(x \vee y) \leftrightarrow(\neg x \wedge \neg y)$.
- The Contrapositive Rule lets us switch between $x \rightarrow y$ and $\neg y \rightarrow \neg x$. Note that neither $y \rightarrow x$ (converse) nor $\neg x \rightarrow$ ᄀy (inverse) is equivalent to $x \rightarrow y$.

Clicker Question \#3

- Let P be the statement $(x \vee y) \rightarrow(z \wedge y)$. Which of these statements is equivalent to P by the Contrapositive Rule?
- (a) ($\neg z \vee \neg y) \rightarrow(\neg x \wedge \neg y)$
- (b) $(z \wedge y) \rightarrow(x \vee y)$
- (c) ($\neg \mathrm{x} \wedge \neg \mathrm{y}) \rightarrow(\neg z \vee \neg y)$
- (d) $(\neg z \wedge \neg y) \rightarrow(\neg x \vee \neg y)$

Answer \#3

- Let P be the statement $(x \vee y) \rightarrow(z \wedge y)$. Which of these statements is equivalent to P by the Contrapositive Rule?
- (a) ($\neg z \vee \neg y) \rightarrow(\neg x \wedge \neg y)$
- (b) $(z \wedge y) \rightarrow(x \vee y)$
- (c) ($\neg \mathrm{x} \wedge \neg \mathrm{y}) \rightarrow(\neg z \vee \neg y)$
- (d) $(\neg z \wedge \neg y) \rightarrow(\neg x \vee \neg y)$

Some Implication Rules

- The two Joining Rules give us $x \vee y$ and y $\checkmark \mathrm{x}$ from x .
- The two Separation Rules give us either x or y from $x \wedge y$.
- We can derive $x \rightarrow y$ from either $7 x$ (Vacuous Proof) or y (Trivial Proof).
- From $\neg \mathrm{x} \rightarrow 0$ we can derive x by Contradiction.

More Implication Rules

- From $x \rightarrow y$ and $y \rightarrow z$ we can derive $x \rightarrow z$ by Hypothetical Syllogism.
- From $(x \wedge y) \rightarrow z$ and $(x \wedge \neg y) \rightarrow z$ we can derive $x \rightarrow z$ by Proof By Cases.
- Of course all these rules may be verified by truth tables.

