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Turing Machine Semantics

• Review: A Turing Machine Example

• Turing Recognizable Languages

• Turing Decidable Languages

• The TR/TD Theorem

• Running Two Machines in Parallel

• Multitape Turing Machines

• Nondeterministic Turing Machines



A Turing Machine Example

• Here is a machine that solves a problem that a 
DFA cannot.  When started in configuration 
i☐w1w2...wn, it will halt if and only if w is in the 
language {anbn: n ≥ 0} -- otherwise it will hang.

• With input aabb we get i☐aabb, ☐paabb, 
☐☐qabb, ☐☐aqbb, ☐☐abqb, ☐☐abbq☐, 
☐☐abrb, ☐☐asb, ☐☐sab, ☐s☐ab, ☐☐pab, 
☐☐☐qb, ☐☐☐bq☐, ☐☐☐rb, ☐☐s☐, 
☐☐☐p☐, ☐☐☐h☐.  The string aabb is 
accepted.



A Turing Machine Example
In i: Move R and go to p.
In p: On ☐, go to h.  
      On b, move L and go to z. 
      On a, print ☐, move R, and go to q.
In q: On a or b, move R and stay in q.  
      On ☐, move L and go to r.
In r: On a or ☐, move L and go to z.
      On b, print ☐, move L, and go to s.
In s: On a or b, move L and stay in s. 
      On ☐, move R and go to p.
In h: Halt (final state).
In z: Move left and stay in z.



Turing Recognizable Languages

• We’ve seen that a Turing machine, when started 
on a string, may or may not ever reach a final 
state.  We define the language of the 
machine M, called L(M), to be the set of strings 
on which M eventually halts.

• If a language X is equal to L(M) for some Turing 
machine M, we say that X is Turing 
recognizable.  The idea is that the machine 
“recognizes” strings in the language by halting, but 
gives no output on strings not in the language.



Turing Recognizable Languages

• In the example earlier, the language of our TM 
is {anbn: n ≥ 0}, a language that we now know 
is not regular.

• A recognizer for a language is not all that 
useful in practice, because we would like to 
know whether or not the string is in the 
language, and the recognizer makes us wait 
forever on the “no” strings.   We can’t always 
recognize that it is in a loop, because it might 
just use more and more tape.



Turing Decidable Languages
• Suppose, though, that the machine always halts, 

but halts in an accepting state when the input 
is in the language and in a rejecting state 
when it is not.  

• We redefine L(M) to be the set of strings that are 
accepted.  In this case we say that the language 
L(M) is Turing decidable. 

• Remembering the Church-Turing thesis, a 
decidable language is one where the decision 
problem can be solved by an algorithm, as long as 
we give the algorithm enough time and memory.



Turing Decidable Languages

• Every Turing decidable language is also Turing 
recognizable.  If we have a decider M for a language 
X, we can modify M to make a recognizer for X.  

• We replace the rejecting final state of M with a 
state in which the machine always moves left, like 
the state “z” of our example.  Now this new 
machine Mʹ halts on input w if and only if M accepts 
w, which is true if and only if w ∈ X.

• We’ll show next time that there exist TR languages 
that are not TD.



Clicker Question #1

• Suppose that a language X is Turing decidable.  
Can we guarantee that X-bar, the 
complement of X, is also Turing decidable?

• (a) No, we might wait forever for an answer.

• (b) No, the decider only reaches an accepting 
state for inputs that are in X.

• (c) Yes, we can reverse the accepting and 
rejecting states of the TM that decides X.

• (d) Yes, as every language is Turing decidable.



Answer #1

• Suppose that a language X is Turing decidable.  
Can we guarantee that X-bar, the 
complement of X, is also Turing decidable?

• (a) No, we might wait forever for an answer.

• (b) No, the decider only reaches an accepting 
state for inputs that are in X.

• (c) Yes, we can reverse the accepting and 
rejecting states of the TM that decides X.

• (d) Yes, as every language is Turing decidable.



The TR/TD Theorem

• The TR/TD Theorem says that a language 
X is Turing decidable if and only if both X and 
its complement X-bar are Turing 
recognizable.

• One half of the proof is easy.  If X is 
decidable, so is X-bar (by exchanging the 
accepting and rejecting states, as we did for 
DFA’s).  By the proof on the previous slide, 
both X and X-bar must also be recognizable.



The TR/TD Theorem

• For the other half, we assume that both X and 
X-bar are recognizable.  So we have two Turing 
machines M and N, with X = L(M) and X-bar = 
L(N).  We need to build a decider for X.

• But if we have an arbitrary string w, we can’t 
run either M or N on it and be confident of 
getting an answer.  Strings in X will cause N to 
run forever, and strings not in X will cause M 
to run forever.  Connecting M and N in series 
will not work.



Running Two TM’s in Parallel

• The trick is to run both M and N on w in 
parallel.  When our decider starts in 
configuration i☐w, the first thing it does is to 
make a new copy of w to the right of the 
original one, so that the tape contents 
become @☐w#@☐w.  

• The left copy of w represents the initial 
configuration of M, and the right copy is the 
initial configuration of N.  The two @ 
symbols mark the head positions.



Running Two TM’s in Parallel

• We now want the decider to run M and N for 
one step each on their respective tapes.  

• We make a sweep of the tape.  When the 
machine finds the first @, it changes the next 
letter and moves the @ left or right, based on 
what M should do in its current state seeing 
that letter.  

• Then it continues to the right and does the 
same thing for the other @, based on what N 
should do in its current state seeing that letter.



Running Two TM’s in Parallel

• The new TM must remember both an M-state 
and an N-state in its own state.  Thus its state 
set is the direct product of M’s state set and 
N’s state set.

• One slight complication -- if the character to 
the right of the first @ is #, the machine 
must make space for a new blank by shifting 
everything to the right.



Clicker Question #2

• Now that we know how to run two TM’s in 
parallel, how do we use this to finish the TR/
TD theorem?

• (a) Run the decider for X in parallel with a 
TM that always halts.

• (b) Run the recognizers for X and X-bar in 
parallel on w until one halts, to tell if w ∈ X.

• (c) Run the recognizer for X in parallel with a 
TM that never halts.

• (d) Run the recognizer for X on all w ∈ ∑*.



Answer #2

• Now that we know how to run two TM’s in 
parallel, how do we use this to finish the TR/
TD theorem?

• (a) Run the decider for X in parallel with a 
TM that always halts.

• (b) Run the recognizers for X and X-bar in 
parallel on w until one halts, to tell if w ∈ X.

• (c) Run the recognizer for X in parallel with a 
TM that never halts.

• (d) Run the recognizer for X on all w ∈ ∑*.



Multitape Turing Machines

• We can use a similar idea to show that a 
multitape Turing machine can be simulated by 
an ordinary one.  A Turing machine with k 
tapes has a transition function from Q × Γk to 
(Γ × {L, R})k.  

• On any step, based on its current state and 
the letters it sees at the head on each tape, it 
writes a letter and moves left or right on 
each tape.



Multitape Turing Machines

• To simulate this multitape machine by an 
ordinary single-tape TM, we use our single 
tape to store the k different tapes in series, 
with # symbols between every pair of 
adjacent tape contents and @ symbols to 
mark each head position.  
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Multitape Turing Machines

• To simulate a move of the multitape machine, 
our ordinary machine sweeps the tape left to 
right, remembers the character after each @, 
then goes back, implements the write and 
move operations for each head, and updates 
its state.
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Other Data Structures

• We can imagine versions of the Turing 
machine with more sophisticated access to 
the memory.  

• We might have tape cells arranged in two 
dimensions, or even in registers with numbers 
as in our computers.

• With enough effort, each of these types of 
machines can be simulated by a one-tape 
machine. 



Clicker Question #3

• Our computers have instructions like “get the word 
in register i and add it to the word in register 0”.  
How would a TM find an arbitrary register i?

• (a) It would keep a binary counter somewhere in 
its memory.

• (b) It would have a state for each number up to and 
use those to count registers.

• (c) It would keep each register on its own tape.

• (d) There is no way for a Turing machine to do this.



Answer #3

• Our computers have instructions like “get the word 
in register i and add it to the word in register 0”.  
How would a TM find an arbitrary register i?

• (a) It would keep a binary counter somewhere in its 
memory.

• (b) It would have a state for each number up to and 
use those to count registers.

• (c) It would keep each register on its own tape.

• (d) There is no way for a Turing machine to do this.



Nondeterministic TM’s

• A nondeterministic Turing machine or NDTM 
is like an ordinary deterministic Turing 
machine (or DTM) except that for a given 
state and letter seen, it may have no options, 
one option, or more than one option as to 
the character it writes and the direction it 
moves.

• As with NFA’s, we say that a string w is in the 
language L(N) if it is possible for N to accept 
w.



Nondeterministic TM’s

• Nondeterminism did not make NFA’s able to 
decide languages that DFA’s could not, though 
the smallest NFA for a language might have 
many fewer states than the smallest DFA.  

• In the case of Turing machines, we will see that 
nondeterminism again does not help 
qualitatively though it might help quantitatively.  

• Every NDTM has an equivalent DTM with the 
same language, but the NDTM might take 
much less time to recognize a given string.



Simulating NDTM’s with DTM’s

• To simulate an NDTM with a DTM, we first build 
a DTM with three tapes.  

• The first tape will store the input string w and 
will never change.  

• The second will be a work tape to exactly 
simulate a particular computation of the NDTM.  

• The third tape will hold a choice sequence, 
which is a string of symbols telling the NDTM 
which of its options to take on each of its moves.



Simulating NDTM’s with DTM’s

• The input w is in the language of the NDTM N if 
and only if there exists a choice sequence that 
causes N to halt, starting from i☐w.  

• So our simulation tests all possible choice 
sequences, starting with the one of length 0, then 
all the ones of length 1, then length 2, and so forth.  

• For each choice sequence, the DTM clears its 
work tape, copies w onto it, then runs N using the 
sequence.  If the simulated N ever halts, the DTM 
accepts w.



Simulating NDTM’s with DTM’s

• So if w ∈ L(N), the DTM will eventually reach 
a good choice sequence and will accept w.  

• If w ∉ L(N), the DTM will run forever 
because it will keep trying longer and longer 
choice sequences.

• Thus the DTM accepts exactly those strings 
in L(N), and so simulates N.

• If the DTM accepts, it takes exponentially 
longer to do so than N did on that input.


