
CMPSCI 250: Introduction to
Computation

Lecture #38: Turing Machine Semantics
David Mix Barrington
4 December 2013

Turing Machine Semantics

• Review: A Turing Machine Example

• Turing Recognizable Languages

• Turing Decidable Languages

• The TR/TD Theorem

• Running Two Machines in Parallel

• Multitape Turing Machines

• Nondeterministic Turing Machines

A Turing Machine Example

• Here is a machine that solves a problem that a
DFA cannot. When started in configuration
i☐w1w2...wn, it will halt if and only if w is in the
language {anbn: n ≥ 0} -- otherwise it will hang.

• With input aabb we get i☐aabb, ☐paabb,
☐☐qabb, ☐☐aqbb, ☐☐abqb, ☐☐abbq☐,
☐☐abrb, ☐☐asb, ☐☐sab, ☐s☐ab, ☐☐pab,
☐☐☐qb, ☐☐☐bq☐, ☐☐☐rb, ☐☐s☐,
☐☐☐p☐, ☐☐☐h☐. The string aabb is
accepted.

A Turing Machine Example
In i: Move R and go to p.
In p: On ☐, go to h.
 On b, move L and go to z.
 On a, print ☐, move R, and go to q.
In q: On a or b, move R and stay in q.
 On ☐, move L and go to r.
In r: On a or ☐, move L and go to z.
 On b, print ☐, move L, and go to s.
In s: On a or b, move L and stay in s.
 On ☐, move R and go to p.
In h: Halt (final state).
In z: Move left and stay in z.

Turing Recognizable Languages

• We’ve seen that a Turing machine, when started
on a string, may or may not ever reach a final
state. We define the language of the
machine M, called L(M), to be the set of strings
on which M eventually halts.

• If a language X is equal to L(M) for some Turing
machine M, we say that X is Turing
recognizable. The idea is that the machine
“recognizes” strings in the language by halting, but
gives no output on strings not in the language.

Turing Recognizable Languages

• In the example earlier, the language of our TM
is {anbn: n ≥ 0}, a language that we now know
is not regular.

• A recognizer for a language is not all that
useful in practice, because we would like to
know whether or not the string is in the
language, and the recognizer makes us wait
forever on the “no” strings. We can’t always
recognize that it is in a loop, because it might
just use more and more tape.

Turing Decidable Languages
• Suppose, though, that the machine always halts,

but halts in an accepting state when the input
is in the language and in a rejecting state
when it is not.

• We redefine L(M) to be the set of strings that are
accepted. In this case we say that the language
L(M) is Turing decidable.

• Remembering the Church-Turing thesis, a
decidable language is one where the decision
problem can be solved by an algorithm, as long as
we give the algorithm enough time and memory.

Turing Decidable Languages

• Every Turing decidable language is also Turing
recognizable. If we have a decider M for a language
X, we can modify M to make a recognizer for X.

• We replace the rejecting final state of M with a
state in which the machine always moves left, like
the state “z” of our example. Now this new
machine Mʹ halts on input w if and only if M accepts
w, which is true if and only if w ∈ X.

• We’ll show next time that there exist TR languages
that are not TD.

Clicker Question #1

• Suppose that a language X is Turing decidable.
Can we guarantee that X-bar, the
complement of X, is also Turing decidable?

• (a) No, we might wait forever for an answer.

• (b) No, the decider only reaches an accepting
state for inputs that are in X.

• (c) Yes, we can reverse the accepting and
rejecting states of the TM that decides X.

• (d) Yes, as every language is Turing decidable.

Answer #1

• Suppose that a language X is Turing decidable.
Can we guarantee that X-bar, the
complement of X, is also Turing decidable?

• (a) No, we might wait forever for an answer.

• (b) No, the decider only reaches an accepting
state for inputs that are in X.

• (c) Yes, we can reverse the accepting and
rejecting states of the TM that decides X.

• (d) Yes, as every language is Turing decidable.

The TR/TD Theorem

• The TR/TD Theorem says that a language
X is Turing decidable if and only if both X and
its complement X-bar are Turing
recognizable.

• One half of the proof is easy. If X is
decidable, so is X-bar (by exchanging the
accepting and rejecting states, as we did for
DFA’s). By the proof on the previous slide,
both X and X-bar must also be recognizable.

The TR/TD Theorem

• For the other half, we assume that both X and
X-bar are recognizable. So we have two Turing
machines M and N, with X = L(M) and X-bar =
L(N). We need to build a decider for X.

• But if we have an arbitrary string w, we can’t
run either M or N on it and be confident of
getting an answer. Strings in X will cause N to
run forever, and strings not in X will cause M
to run forever. Connecting M and N in series
will not work.

Running Two TM’s in Parallel

• The trick is to run both M and N on w in
parallel. When our decider starts in
configuration i☐w, the first thing it does is to
make a new copy of w to the right of the
original one, so that the tape contents
become @☐w#@☐w.

• The left copy of w represents the initial
configuration of M, and the right copy is the
initial configuration of N. The two @
symbols mark the head positions.

Running Two TM’s in Parallel

• We now want the decider to run M and N for
one step each on their respective tapes.

• We make a sweep of the tape. When the
machine finds the first @, it changes the next
letter and moves the @ left or right, based on
what M should do in its current state seeing
that letter.

• Then it continues to the right and does the
same thing for the other @, based on what N
should do in its current state seeing that letter.

Running Two TM’s in Parallel

• The new TM must remember both an M-state
and an N-state in its own state. Thus its state
set is the direct product of M’s state set and
N’s state set.

• One slight complication -- if the character to
the right of the first @ is #, the machine
must make space for a new blank by shifting
everything to the right.

Clicker Question #2

• Now that we know how to run two TM’s in
parallel, how do we use this to finish the TR/
TD theorem?

• (a) Run the decider for X in parallel with a
TM that always halts.

• (b) Run the recognizers for X and X-bar in
parallel on w until one halts, to tell if w ∈ X.

• (c) Run the recognizer for X in parallel with a
TM that never halts.

• (d) Run the recognizer for X on all w ∈ ∑*.

Answer #2

• Now that we know how to run two TM’s in
parallel, how do we use this to finish the TR/
TD theorem?

• (a) Run the decider for X in parallel with a
TM that always halts.

• (b) Run the recognizers for X and X-bar in
parallel on w until one halts, to tell if w ∈ X.

• (c) Run the recognizer for X in parallel with a
TM that never halts.

• (d) Run the recognizer for X on all w ∈ ∑*.

Multitape Turing Machines

• We can use a similar idea to show that a
multitape Turing machine can be simulated by
an ordinary one. A Turing machine with k
tapes has a transition function from Q × Γk to
(Γ × {L, R})k.

• On any step, based on its current state and
the letters it sees at the head on each tape, it
writes a letter and moves left or right on
each tape.

Multitape Turing Machines

• To simulate this multitape machine by an
ordinary single-tape TM, we use our single
tape to store the k different tapes in series,
with # symbols between every pair of
adjacent tape contents and @ symbols to
mark each head position.

bbbb

b

aaa

aa

a

bbb @@@ ##

Multitape Turing Machines

• To simulate a move of the multitape machine,
our ordinary machine sweeps the tape left to
right, remembers the character after each @,
then goes back, implements the write and
move operations for each head, and updates
its state.

bbbb

b

aaa

aa

a

bbb @@@ ##

Other Data Structures

• We can imagine versions of the Turing
machine with more sophisticated access to
the memory.

• We might have tape cells arranged in two
dimensions, or even in registers with numbers
as in our computers.

• With enough effort, each of these types of
machines can be simulated by a one-tape
machine.

Clicker Question #3

• Our computers have instructions like “get the word
in register i and add it to the word in register 0”.
How would a TM find an arbitrary register i?

• (a) It would keep a binary counter somewhere in
its memory.

• (b) It would have a state for each number up to and
use those to count registers.

• (c) It would keep each register on its own tape.

• (d) There is no way for a Turing machine to do this.

Answer #3

• Our computers have instructions like “get the word
in register i and add it to the word in register 0”.
How would a TM find an arbitrary register i?

• (a) It would keep a binary counter somewhere in its
memory.

• (b) It would have a state for each number up to and
use those to count registers.

• (c) It would keep each register on its own tape.

• (d) There is no way for a Turing machine to do this.

Nondeterministic TM’s

• A nondeterministic Turing machine or NDTM
is like an ordinary deterministic Turing
machine (or DTM) except that for a given
state and letter seen, it may have no options,
one option, or more than one option as to
the character it writes and the direction it
moves.

• As with NFA’s, we say that a string w is in the
language L(N) if it is possible for N to accept
w.

Nondeterministic TM’s

• Nondeterminism did not make NFA’s able to
decide languages that DFA’s could not, though
the smallest NFA for a language might have
many fewer states than the smallest DFA.

• In the case of Turing machines, we will see that
nondeterminism again does not help
qualitatively though it might help quantitatively.

• Every NDTM has an equivalent DTM with the
same language, but the NDTM might take
much less time to recognize a given string.

Simulating NDTM’s with DTM’s

• To simulate an NDTM with a DTM, we first build
a DTM with three tapes.

• The first tape will store the input string w and
will never change.

• The second will be a work tape to exactly
simulate a particular computation of the NDTM.

• The third tape will hold a choice sequence,
which is a string of symbols telling the NDTM
which of its options to take on each of its moves.

Simulating NDTM’s with DTM’s

• The input w is in the language of the NDTM N if
and only if there exists a choice sequence that
causes N to halt, starting from i☐w.

• So our simulation tests all possible choice
sequences, starting with the one of length 0, then
all the ones of length 1, then length 2, and so forth.

• For each choice sequence, the DTM clears its
work tape, copies w onto it, then runs N using the
sequence. If the simulated N ever halts, the DTM
accepts w.

Simulating NDTM’s with DTM’s

• So if w ∈ L(N), the DTM will eventually reach
a good choice sequence and will accept w.

• If w ∉ L(N), the DTM will run forever
because it will keep trying longer and longer
choice sequences.

• Thus the DTM accepts exactly those strings
in L(N), and so simulates N.

• If the DTM accepts, it takes exponentially
longer to do so than N did on that input.

