CMPSCI 250: Introduction to Computation

Lecture \#36: State Elimination
David Mix Barrington
27 November 2013

State Elimination

- Kleene's Theorem Overview
- Another New Model:The r.e.-NFA
- Overview of the Construction
- Eliminating a State
- Example:The Language EE
- Example:The Language No-aba
- Example: Number of a's Divisible by 3

Kleene's Theorem Overview

- We are finally ready to finish Kleene's Theorem, proving that a language has a regular expression if and only if it has a DFA.
- We have shown how to take a regular expression, produce a λ-NFA from it by the recursive construction, kill the λ-moves to get an ordinary NFA, use the Subset Construction to get a DFA, and then (if we want) minimize that DFA.

Final Step of Kleene's Theorem

- The remaining step is to take a DFA and produce a regular expression for its language.
- As it turns out, the State Elimination

Construction works equally well to get a regular expression for the language of any ordinary NFA or λ-NFA as well.

Final Step of Kleene's Theorem

- While the first two steps of converting a regular expression to a DFA roughly preserve the size, the Subset Construction in general takes an NFA with k states to a DFA with 2^{k} states.
- Though we won't prove this, State Elimination can also cause a large blowup, creating a long regular expression from a small DFA.
- (Excursion I4.II in the text takes a closer look at this.)

Another Model:The R.E.-NFA

- The State Elimination Construction operates on yet another kind of NFA, which we will call an r.e.-NFA because the labels on its moves can be arbitrary regular expressions instead of just letters (as in an ordinary NFA) or either letters or λ (as in a λ-NFA).

Normal Form for R.E.-NFA's

- Not every diagram with regular expressions on its edges is an r.e.-NFA -- we need to satisfy some rules.
- The first three are the same as the rules in our construction of λ-NFA's from regular expresssions:
- (I) Exactly one final state, not equal to the start state,
- (2) No moves into the start state, and
- (3) No moves out of the final state.

Normal Form for R.E.-NFA's

- The last rule is new: (4) no parallel edges, that is, no two edges with the same start node and end node.
- We have to redefine the Δ^{*} relation. We still have $\forall \mathrm{s}: \Delta^{*}(\mathrm{~s}, \lambda, \mathrm{~s})$, but now we have the rule $\left[\Delta^{*}(\mathrm{~s}, \mathrm{v}, \mathrm{u}) \wedge \Delta(\mathrm{u}, \mathrm{R}, \mathrm{t}) \wedge(\mathrm{w} \in \mathrm{L}(\mathrm{R}))\right] \rightarrow \Delta^{*}(\mathrm{~s}$, $\mathrm{vw}, \mathrm{t})$.
- This rule isn't very useful for computing, as we have no equivalent top-down form for it.

Clicker Question \#I

- Which of these strings is not in the language of the r.e.-NFA pictured at right?
- (a) baabaa

- (b) baabb
- (c) baaba
- (d) bbabb

Answer \#I

- Which of these strings is not in the language of the r.e.-NFA pictured at right?
- (a) baabaa

- (b) baabb
- (c) baaba
- (d) bbabb

Overview of the Construction

- The basic idea is to take our original DFA (or NFA, or λ-NFA), modify it so that it obeys the r.e.-NFA rules but still has the same language (how?) and then eliminate states one by one until there are only two left.
- Each elimination will preserve the language of the automaton and ensure that the r.e.-NFA rules still hold.

Overview of the Construction

- An r.e.-NFA with two states must have one of them as the start state and the other as the only final state, by rule (I).
- By rules (2), (3), and (4), there can be only one edge, going from the start state to the final state, and the only possible path from the start state to a final state has exactly one edge, this one.
- This edge is labeled by a regular expression R, and the language of the r.e.-NFA is exactly $L(R)$.

Overview of the Construction

- Thus $L(R)$ is also the language of the original DFA.
- The states we eliminate are every state except the start state and final state.
- We can eliminate them in any order and get a correct final regular expression, but if we choose the order wisely we may get a simpler regular expression.

Eliminating a State

- Suppose we have a state q that is neither initial nor final, and we want to eliminate it.
- We don't care about paths that start or end at q, because the language is defined only in terms of paths that start at the initial state and end at the final state.
- To safely delete q, we have to replace any twostep path, that had q as its middle node, by a single edge.

Eliminating a State

- If (p, α, q) and (q, β, r) are any two edges, and (q, γ, q) is the loop on q, then when we delete q we must add a new edge ($p, \alpha \gamma^{*} \beta, r$).
- (Here α, β, and γ are regular expressions. Note also that $p=r$ is possible.)
- If there is already an edge from p to r, though, we add the new edge by changing the existing (p, δ, r) to $\left(p, \delta+\alpha \gamma^{*} \beta, r\right)$.

Eliminating a State

- (Note that if there is no loop on q we can take γ to be \varnothing and then $\gamma^{*}=\varnothing^{*}$ which is the identity for concatenation, so that $\alpha \gamma^{*} \beta=$ $\alpha \beta$.)
- When we delete q , we should count all the m edges into q and all the n edges out of q, and make sure that we have added $m n$ new edges. The loop on q, if it exists, does not count toward either m or n .

Clicker Question \#2

- Which transition will be present in the new r.e.-NFA if
we eliminate state r?
(a) $\left(\mathrm{p}, \mathrm{b}^{*}, \mathrm{q}\right)$
(b) $(\mathrm{p}, \mathrm{bbaa}, \mathrm{p})$
- (c) $\left(p, b b(b a)^{*} a^{*}, p\right)$
- (d) (p, bb(ba)*b, q)

Answer \#2

- Which transition will be present in the new r.e.-NFA if we eliminate state r ?
- (a) $\left(p, b^{*}, q\right)$
- (b) (p, bbaa*, p)
- (c) $\left(p, b b(b a)^{*} a a^{*}, p\right)$

- (d) (p, bb(ba)*b, q)
- (Answers (a) and (d) are merged)

Example:The Language EE

- In Excursion 5.3 (not assigned this year) we design a regular expression for the language EE, of strings over $\{a, b\}$ that have both a even number of a's and an even number of b's.
- We'll now use State Elimination to get such an expression from a DFA.
- The natural DFA has state set $\{00,01,10,00\}$. Here 00 is the start state and the only final state, a's change the first bit of the state, and b's change the second bit.

Example: The Language EE

- But this DFA violates the rules for an r.e.-NFA -- we have to add a new start state i and a new final state f , and add transitions (i, λ, 00) and ($00, \lambda, \mathrm{f}$).
- Now all we have to do is eliminate four states to get
 our regular expression.

Example: The Language EE

- We begin by killing 01 , which has two edges in and two out.
- We need four new edges: (00, bb, 00), (00, ba, I I), (I I , $a b, 00)$, and (II, aa, II).

Example: The Language EE

- Next we eliminate 10 (which looks like a good idea as it has no loop and fewer overall edges).
- Again we get four new edges, each of which is parallel to an existing edge, making (00 , aa +bb, 00), (00, ab+ba, II), (II, $a b+b a, 00)$, and (II, aa+bb, 00).

- This gives us four states.

Clicker Question \#3

- If we now eliminated 00 , we would create four transitions. Which of these four would not appear in the new r.e.-NFA?
- (a) (i, (aa+bb)* ${ }^{*}$)
- (b) (i, (aa+bb)* $(a b+b a), I I)$
- (c) (II, (aa+bb) $\left.{ }^{*}(a b+b a), f\right)$
- (d)(II, aa + bb + (ab+ba)(aa
 $+b b)^{*}(a b+b a)$, I I)

Answer \#3

- If we now eliminated 00 , we would create four transitions. Which of these four would not appear in the new r.e.-NFA?
- (a) (i, (aa+bb)* ${ }^{*}$)
- (b) (i, (aa+bb)* $(a b+b a), I I)$
- (c) (II, (aa+bb)* $(a b+b a), f)$
- (d)(II, aa + bb + (ab+ba)(aa
 $+b b)^{*}(a b+b a)$, I I)

Finishing the EE Example

- The four remaining states are $\mathrm{i}, 00, \mathrm{II}$, and f .
- State II now has one edge in and one edge out, along with a loop.
- When we eliminate II $a \mathrm{a}+\mathrm{bb}+(a b+b a)(a a+b b)^{*}(a b+b a)$ we create only one edge, (00, (ab+ba)(aa $\left.+b b)^{*}(a b+b a), 00\right)$.

Finishing the EE Example

- The last state to eliminate is now 00 , which also has one edge in, one edge out, and one loop.
- (Note that any three-
 state r.e.-NFA must have a form similar to ${ }^{\left[a a+b b+(a b+b a)(a a+b b)^{*}(a b+b a)\right]^{*}}$ this, maybe with another edge from initial to final state.)

Finishing the EE Example

- The one edge that we create is ($\mathrm{i},[\mathrm{aa}+\mathrm{bb}+(\mathrm{ab}$ $\left.+b a)(a a+b b)^{*}(a b+b a)\right]^{*}, f$, and our final regular expression is the label of this edge.
- We would get a grubbier, equivalent regular expression by eliminating the states in a different order.
- The expression $a a+b b+(a b+b a)(a a+b b)^{*}(a b$ $+b a)$ represents the language EEP of "primitive" (non-factorable) strings in EE.

Example:The Language No-aba

- We've seen the language Yes-aba $=\Sigma^{*} \mathrm{aba} \Sigma^{*}$ and its complement No-aba several times now. We have a four-state DFA for No-aba -let's turn this into a regular expression.
- The state set is $\{1,2,3,4\}$, the start state I, final state set $\{1,2,3\}$, and edges ($1, a, 2$), ($1, b$, I), (2,a,2), (2,b,3), (3,a,4), (3,b,l), (4,a,4), and (4,b,4).
- Again we need new start states i and f, with new edges (i, $\lambda, I),(I, \lambda, f),(2, \lambda, f)$, and $(3, \lambda, f)$.

Example: The Language No-aba

- The first thing to do is to kill state 4 , which requires adding no new edges, because it has no paths through it from i to f.
- Next, state 2 looks like a good target. It has one edge in and two out, for two new edges.

Example: The Language No-aba

- Killing state 2 produces two new edges, (I, aa*b, 2) and (I, aa*, f).
- The latter edge is merged with the
 existing edge (I, λ, f).

Example: The Language No-aba

- Now if we kill state 3 we create (I, aa*bb, I) which becomes ($\mathrm{I}, \mathrm{b}+$ aa*bb, I) and (I, aa*b, f)

b
which becomes (I, $\lambda+$ $a a^{*}+\mathrm{aa}{ }^{*}$, f).
- Killing state I gives the
(b+aa*bb)* $\left(\lambda+a a^{*}+a a^{*} b\right)$
final expression (b+

Example: \# of a's Divisible by 3

- Here's another example (Exercise 14.10 .3 in the text). Let D be the language of strings over $\{a, b\}$ where the number of a's is divisible by 3 .
- It's clear how to make a DFA for this: states $\{0, I, 2\}$, start state and only final state 0 , edges (p, b, p) for each state p, and edges ($0, a, I$), (I, a, 2), and ($2, a, 0$).
- To make an r.e.-NFA, we once again add a new start state i and new final state f, with edges ($i, \lambda, 0$) and $(0, \lambda, f)$. We have five states now and must kill three.

Example: \# of a's Divisible by 3

- We first kill 2 , creating one new edge ($1, a b^{*} \mathrm{a}, 0$).
- Then killing I creates a new edge ($0, a b^{*} a b^{*} a, 0$), which adds to the existing $(0, b, 0)$ to get $(0, b$ $\left.+a b^{*} a b^{*} a, 0\right)$.

Example: \# of a's Divisible by 3

- Finally, killing 0 gives the expression [b + $a b^{*} a b^{*}$ a] ${ }^{*}$, which makes sense because we can break any string in D into pieces that are either b's or have exactly three a's.
- A more challenging problem is the language of strings where both the number of a's and the number of b's are divisible by three.
- How about the strings where the number of a's and the number of b's are congruent to one another modulo 3?

