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The Myhill-Nerode Theorem

• Review: L-Distinguishable Strings

• The Language Prime has no DFA

• The Relation of L-Equivalence

• More Than k Classes Means More Than k 
States

• Constructing a DFA From the Relation

• Completing the Proof

• The Minimal DFA and Minimizing DFA’s



Review: L-Distinguishable Strings

• Let L ⊆ Σ* be any language.  Two strings u and 
v are L-distinguishable (or L-
inequivalent) if there exists a string w 
such that uw ∈ L ⊕ vw ∈ L.  

• They are L-equivalent if for every string 
w, uw ∈ L ↔ vw ∈ L (we write this as u ≡L v).

• We proved last time that if a DFA takes two 
L-distinguishable strings to the same state, it 
cannot have L as its language.  



Clicker Question #1

• Let Σ = {a, b} and X be the language (Σ3)*, 
which is the set of all strings whose length is 
divisible by 3.  Which one of these pairs of 
strings is X-distinguishable?

• (a) abba and b

• (b) bba and λ

• (c) abba and aba

• (d) bab and bbaaba



Answer #1

• Let Σ = {a, b} and X be the language (Σ3)*, 
which is the set of all strings whose length is 
divisible by 3.  Which one of these pairs of 
strings is X-distinguishable?

• (a) abba and b

• (b) bba and λ

• (c) abba and aba (append, e.g., either λ or aa)

• (d) bab and bbaaba



L-Distinguishable Strings

• We use this fact to prove a lower bound on 
the number of states in a DFA for L.  Suppose 
we can find a set S of k strings that are 
pairwise L-distinguishable.  Then it is 
impossible for a DFA with fewer than k states 
to have L as its language.

• If S is an infinite set of pairwise L-
distinguishable strings, no correct DFA for L 
can exist at all.  



The Paren Language

• For example, the language Paren ⊆ {L, R}* has 
such a set,  {Li: i ≥ 0}, because if i ≠ j then 
LiRi is in Paren but LjRi is not.  

• So any two distinct strings in the set are L-
distinguishable.  

• No DFA for Paren exists, and thus Paren is 
not a regular language.



Prime Has No DFA

• Let Prime be the language {an: n is a prime 
number}.  It doesn’t seem likely that any DFA 
could decide Prime, but this is a little tricky 
to prove.

• Let i and j be two naturals with i > j.  We’d 
like to show that ai  and aj are Prime-
distinguishable, by finding a string ak such that 
aiak ∈ Prime and ajak ∉ Prime (or vice versa). 

•  We need a natural k such that i + k is prime 
and j + k not, or vice versa.



Prime Has No DFA
• Pick a prime p bigger than both i and j (since 

there are infinitely many primes).  

• Does k = p - j work?  It depends on whether 
i + (p - j) is prime -- if it isn’t we win because 
j + (p - j) is prime.  If it is prime, look at k = p 
+ i - 2j.  Now j + k is the prime p + (i - j), so if 
i + k = p + 2(i - j) is not prime we win.

• We find a value of k that works unless all the 
numbers p, p + (i - j), p + 2(i - j),..., p + r(i - 
j),... are prime.  But p + p(i - j) is not prime as 
it is divisible by p.



The Relation of L-Equivalence

• The relation of L-equivalence is aptly named 
because we can easily prove that it is an 
equivalence relation.  

• Clearly ∀w: uw ∈L ↔ uw ∈ L, so it is 

reflexive.  

• If we have that ∀w: uw ∈ L ↔ vw ∈ L, we may 

conclude that ∀w: vw ∈ L ↔ uw ∈ L, and thus 

it is symmetric.  

• Transitivity is equally simple to prove.



Clicker Question #2

• Again let Σ = {a, b} and let X = (Σ3)*.  Which 
one of these sets of strings is pairwise X-
inequivalent, and thus contains one element 
of each X-equivalence class?

• (a) {λ, ab, abba}

• (b) {λ, b, bb, bbb}

• (c) {λ, aaa, aab, abb, bbb}

• (d) {λ, a, ababab}



Answer #2

• Again let Σ = {a, b} and let X = (Σ3)*.  Which 
one of these sets of strings is pairwise X-
inequivalent, and thus contains one element 
of each X-equivalence class?

• (a) {λ, ab, abba}

• (b) {λ, b, bb, bbb} (λ ≡ bbb)

• (c) {λ, aaa, aab, abb, bbb} (all five are X-
equivalent)

• (d) {λ, aa, ababa} (aa ≡ ababa)



The Myhill-Nerode Theorem

• We know that any equivalence relation 
partitions its base set into equivalence 
classes.  

• The Myhill-Nerode Theorem says that 
for any language L, there exists a DFA for L 
with k or fewer states if and only if the L-
equivalence relation’s partition has k or fewer 
classes. 



The Myhill-Nerode Theorem

• That is, if the number of classes is a natural k 
then there is a minimal DFA with k states.

• If the number of classes is infinite then there 
is no DFA at all.

• It’s easiest to think of the theorem in the 
form:   “k or fewer states ↔ k or fewer 

classes”.



(≥ k Classes) → (≥ k States)
• We’ve essentially already proved half of this 

theorem.  We can take “k or fewer states → k or 
fewer classes” and take its contrapositive, to get 
“more than k classes → more than k states”.  

• Let L be an arbitrary language and assume that 
the L-equivalence relation has more than k (non-
empty) equivalence classes.  Let x1,...,xk+1 be one 
string from each of the first k + 1 classes.  

• Since any two distinct strings in this set are in 
different classes, by definition they are not L-
equivalent, and thus they are L-distinguishable.  



(≥ k Classes) → (≥ k States)

• By our result from last lecture, since there 
exists a set of k + 1 pairwise L-distinguishable 
strings, no DFA with k or fewer states can 
have L as its language.  

• This proves the first half of the Myhill-
Nerode Theorem.

• The second half will be a bit more 
complicated.



Making a DFA From the Relation

• Now to prove the other half, “k or fewer 
classes → k or fewer states”.  

• In fact we will prove that if there are exactly 
k classes, we can build a DFA with exactly k 
states.  

• This DFA will necessarily be the smallest 
possible for the language, because a smaller 
one would contradict the first half of the 
theorem, which we have just proved.



Making a DFA From the Relation

• Let L be an arbitrary language and assume that 
the classes of the relation are C1,..., Ck.  We will 
build a DFA with states q1,...,qk, each state 
corresponding to one of the classes.

• The initial state will be the state for the class 
containing λ.  The final states will be any states 
that contain strings that are in L.  The 
transition function is defined as follows.  To 
compute δ(qi, a), where a ∈ Σ, let w be any 
string in the class Ci and define δ(qi, a) to be 
the state for the class containing the string wa.



Making a DFA From the Relation

• It’s not obvious that this δ function is well-
defined, since its definition contains an 
arbitrary choice.  We must show that any 
choice yields the same result.

• Let u and v be two strings in the class Ci.  We 
need to show that ua and va are in the same 
class as each other.  

• That is, for any u, v, and a, we must show that 
(u ≡L v) → (ua ≡L va).  



The δ Function is Well-Defined

• Assume that ∀w: uw ∈ L ↔ vw ∈ L.  

• Let z be an arbitrary string.  

• Then uaz ∈ L ↔ vaz ∈ L, because we can 

specialize the statement we have to az.  

• We have proved that ∀z: uaz ∈ L ↔ vaz ∈ L, 

which by definition means that ua ≡L va.



Completing the Proof

• Now we prove that for this new DFA and for 
any string w, δ*(i, w) = qj ↔ w ∈ Cj.  (Here “i” 

is the initial state of the DFA.)  

• We prove this by induction on w.  Clearly 
δ*(i, λ) = i, which matches the class of λ. 

•  Assume as IH that δ*(i, w) = x matches the 
class of w.  Then for any a, δ*(i, wa) is defined 
as δ(x, a), which matches the class of wa by 
the definition, which is what we want.



Completing the Proof

• If two strings are in the same class, either 
both are in L or both are not in L.  

• So L is the union of the classes corresponding 
to our final states.  

• Since the DFA takes a string to the state for 
its class, δ*(i, w) ∈ F ↔ w ∈ L.

• Thus this DFA decides the language L.



Clicker Question #3
• Again let Σ = {a, b} and let X = (Σ3)*.  We saw earlier 

that there are three X-equivalence classes, so the 
MN theorem gives us a DFA for X with three states.  
Which statement about this DFA is false?

• (a) The initial state is for the class of λ.

• (b) The a-arrow and b-arrow from each state always 
go to different states.

• (c) The b-arrow from the class of a goes to the class 
of ab.

• (d) The class of λ is final and the other two are not.



Answer #3
• Again let Σ = {a, b} and let X = (Σ3)*.  We saw earlier 

that there are three X-equivalence classes, so the 
MN theorem gives us a DFA for X with three states.  
Which statement about this DFA is false?

• (a) The initial state is for the class of λ.

• (b) The a-arrow and b-arrow from each state always go to 
different states. (They actually go to the same state.)

• (c) The b-arrow from the class of a goes to the class 
of ab.

• (d) The class of λ is final and the other two are not.



The Minimal DFA

• Let X be a regular language and let M be any 
DFA such that L(M) = X.  

• We will show that the minimal DFA, 
constructed from the classes of the L-
equivalence relation, is contained within 
M.  

• We begin by eliminating any unreachable 
states of M, which does not change M’s 
language. 



The Minimal DFA

• Remember that a correct DFA cannot take 
two L-distinguishable strings to the same 
state.  

• So for any state p of M, the strings w such 
that δ(i, w) = p are all L-equivalent to each 
other.  

• Each state of M is thus associated with one of 
the classes of the L-equivalence relation.  



Minimizing a DFA

• The states of M are thus partitioned into 
classes themselves.  

• If we combine each class into a single state, 
we get the minimal DFA.  

• In discussion on Wednesday we will see, and 
then practice, a specific algorithm that will 
find these classes.  It thus will construct the 
minimal DFA equivalent to any given DFA.


