## CMPSCI 250: Introduction to Computation

Lecture \#32:The Myhill-Nerode Theorem
David Mix Barrington
18 November 2013

## The Myhill-Nerode Theorem

- Review: L-Distinguishable Strings
- The Language Prime has no DFA
- The Relation of L-Equivalence
- More Than k Classes Means More Than k States
- Constructing a DFA From the Relation
- Completing the Proof
- The Minimal DFA and Minimizing DFA's


## Review: L-Distinguishable Strings

- Let $\mathrm{L} \subseteq \Sigma^{*}$ be any language. Two strings $u$ and $v$ are L-distinguishable (or Linequivalent) if there exists a string $w$ such that $\mathrm{uw} \in \mathrm{L} \oplus \mathrm{vw} \in \mathrm{L}$.
- They are $\mathbf{L}$-equivalent if for every string $w, u w \in L \leftrightarrow v w \in L$ (we write this as $u \equiv L v$ ).
- We proved last time that if a DFA takes two L-distinguishable strings to the same state, it cannot have $L$ as its language.


## Clicker Question \#I

- Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and X be the language $\left(\Sigma^{3}\right)^{*}$, which is the set of all strings whose length is divisible by 3 . Which one of these pairs of strings is X -distinguishable?
- (a) abba and b
- (b) bba and $\lambda$
- (c) abba and aba
- (d) bab and bbaaba


## Answer \#I

- Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and X be the language $\left(\Sigma^{3}\right)^{*}$, which is the set of all strings whose length is divisible by 3 . Which one of these pairs of strings is X -distinguishable?
- (a) abba and b
- (b) bba and $\lambda$
- (c) abba and aba (append, e.g., either $\lambda$ or $a a$ )
- (d) bab and bbaaba


## L-Distinguishable Strings

- We use this fact to prove a lower bound on the number of states in a DFA for L. Suppose we can find a set $S$ of $k$ strings that are pairwise L-distinguishable. Then it is impossible for a DFA with fewer than $k$ states to have $L$ as its language.
- If $S$ is an infinite set of pairwise Ldistinguishable strings, no correct DFA for $L$ can exist at all.


## The Paren Language

- For example, the language Paren $\subseteq\{L, R\}^{*}$ has such a set, $\left\{L^{i}: i \geq 0\right\}$, because if $i \neq j$ then $L^{i} R^{i}$ is in Paren but LiRi is not.
- So any two distinct strings in the set are Ldistinguishable.
- No DFA for Paren exists, and thus Paren is not a regular language.


## Prime Has No DFA

- Let Prime be the language $\left\{\mathrm{a}^{\mathrm{n}}: \mathrm{n}\right.$ is a prime number\}. It doesn't seem likely that any DFA could decide Prime, but this is a little tricky to prove.
- Let i and j be two naturals with $\mathrm{i}>\mathrm{j}$. We'd like to show that $a^{i}$ and $a^{j}$ are Primedistinguishable, by finding a string $\mathrm{a}^{\mathrm{k}}$ such that $a^{i} a^{k} \in \operatorname{Prime}$ and $a^{i} a^{k} \notin$ Prime (or vice versa).
- We need a natural $k$ such that $i+k$ is prime and $\mathrm{j}+\mathrm{k}$ not, or vice versa.


## Prime Has No DFA

- Pick a prime p bigger than both $i$ and $j$ (since there are infinitely many primes).
- Does $\mathrm{k}=\mathrm{p}$ - j work? It depends on whether $i+(p-j)$ is prime -- if it isn't we win because $j+(p-j)$ is prime. If it is prime, look at $k=p$ $+i-2 j$. Now $j+k$ is the prime $p+(i-j)$, so if $i+k=p+2(i-j)$ is not prime we win.
- We find a value of $k$ that works unless all the numbers $p, p+(i-j), p+2(i-j), \ldots, p+r(i-$ $j)$,... are prime. But $p+p(i-j)$ is not prime as it is divisible by $p$.


## The Relation of L-Equivalence

- The relation of L-equivalence is aptly named because we can easily prove that it is an equivalence relation.
- Clearly $\forall w: u w \in L \leftrightarrow u w \in L$, so it is reflexive.
- If we have that $\forall w: u w \in L \leftrightarrow v w \in L$, we may conclude that $\forall \mathrm{w}: \mathrm{vw} \in \mathrm{L} \leftrightarrow \mathrm{uw} \in \mathrm{L}$, and thus it is symmetric.
- Transitivity is equally simple to prove.


## Clicker Question \#2

- Again let $\Sigma=\{a, b\}$ and let $X=\left(\Sigma^{3}\right)^{*}$. Which one of these sets of strings is pairwise $X$ inequivalent, and thus contains one element of each X -equivalence class?
- (a) $\{\lambda, a b, a b b a\}$
- (b) $\{\lambda, b, b b, b b b\}$
- (c) $\{\lambda, a a a, a a b, a b b, b b b\}$
- (d) $\{\lambda, a, a b a b a b\}$


## Answer \#2

- Again let $\Sigma=\{a, b\}$ and let $X=\left(\Sigma^{3}\right)^{*}$. Which one of these sets of strings is pairwise $X$ inequivalent, and thus contains one element of each X -equivalence class?
- (a) $\{\lambda, a b, a b b a\}$
- (b) $\{\lambda, b, b b, b b b\}(\lambda \equiv b b b)$
- (c) $\{\lambda$, aaa, aab, abb, bbb\} (all five are $X$ equivalent)
- (d) $\{\lambda, a a, a b a b a\}(a a \equiv a b a b a)$


## The Myhill-Nerode Theorem

- We know that any equivalence relation partitions its base set into equivalence classes.
- The Myhill-Nerode Theorem says that for any language $L$, there exists a DFA for $L$ with $k$ or fewer states if and only if the Lequivalence relation's partition has k or fewer classes.


## The Myhill-Nerode Theorem

- That is, if the number of classes is a natural $k$ then there is a minimal DFA with $k$ states.
- If the number of classes is infinite then there is no DFA at all.
- It's easiest to think of the theorem in the form: " $k$ or fewer states $\leftrightarrow k$ or fewer classes".


## ( $\geq \mathrm{k}$ Classes) $\rightarrow$ ( $\geq \mathrm{k}$ States)

- We've essentially already proved half of this theorem. We can take " $k$ or fewer states $\rightarrow k$ or fewer classes" and take its contrapositive, to get "more than k classes $\rightarrow$ more than k states".
- Let L be an arbitrary language and assume that the L-equivalence relation has more than $k$ (nonempty) equivalence classes. Let $x_{1}, \ldots, x_{k+1}$ be one string from each of the first $\mathrm{k}+\mathrm{I}$ classes.
- Since any two distinct strings in this set are in different classes, by definition they are not Lequivalent, and thus they are L-distinguishable.


## ( $\geq \mathrm{k}$ Classes) $\rightarrow$ ( $\geq \mathrm{k}$ States )

- By our result from last lecture, since there exists a set of $k+1$ pairwise L-distinguishable strings, no DFA with $k$ or fewer states can have $L$ as its language.
- This proves the first half of the MyhillNerode Theorem.
- The second half will be a bit more complicated.


## Making a DFA From the Relation

- Now to prove the other half,"k or fewer classes $\rightarrow k$ or fewer states".
- In fact we will prove that if there are exactly k classes, we can build a DFA with exactly k states.
- This DFA will necessarily be the smallest possible for the language, because a smaller one would contradict the first half of the theorem, which we have just proved.


## Making a DFA From the Relation

- Let L be an arbitrary language and assume that the classes of the relation are $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$. We will build a DFA with states $\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{k}}$, each state corresponding to one of the classes.
- The initial state will be the state for the class containing $\lambda$. The final states will be any states that contain strings that are in L . The transition function is defined as follows. To compute $\delta\left(q_{i}, a\right)$, where $a \in \Sigma$, let $w$ be any string in the class $C_{i}$ and define $\delta\left(q_{i}, a\right)$ to be the state for the class containing the string wa.


## Making a DFA From the Relation

- It's not obvious that this $\delta$ function is welldefined, since its definition contains an arbitrary choice. We must show that any choice yields the same result.
- Let $u$ and $v$ be two strings in the class $\mathrm{C}_{\mathrm{i}}$. We need to show that ua and va are in the same class as each other.
- That is, for any $u, v$, and $a$, we must show that $(u \equiv\llcorner v) \rightarrow(u a \equiv\llcorner v a)$.


## The $\delta$ Function is Well-Defined

- Assume that $\forall \mathrm{w}: \mathrm{uw} \in \mathrm{L} \leftrightarrow \mathrm{vw} \in \mathrm{L}$.
- Let $\mathbf{z}$ be an arbitrary string.
- Then uaz $\in L \leftrightarrow \operatorname{vaz} \in L$, because we can specialize the statement we have to az.
- We have proved that $\forall z: u a z \in L \leftrightarrow v a z \in L$, which by definition means that $u a \equiv$ va.


## Completing the Proof

- Now we prove that for this new DFA and for any string $w, \delta^{*}(i, w)=q_{i} \leftrightarrow w \in C_{j}$. (Here " $i$ " is the initial state of the DFA.)
- We prove this by induction on w. Clearly $\delta^{*}(i, \lambda)=i$, which matches the class of $\lambda$.
- Assume as IH that $\delta^{*}(i, w)=x$ matches the class of $w$. Then for any $a, \delta^{*}(i, w a)$ is defined as $\delta(x, a)$, which matches the class of wa by the definition, which is what we want.


## Completing the Proof

- If two strings are in the same class, either both are in $L$ or both are not in $L$.
- So $L$ is the union of the classes corresponding to our final states.
- Since the DFA takes a string to the state for its class, $\delta^{*}(i, w) \in F \leftrightarrow w \in L$.
- Thus this DFA decides the language L .


## Clicker Question \#3

- Again let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and let $\mathrm{X}=\left(\Sigma^{3}\right)^{*}$. We saw earlier that there are three $X$-equivalence classes, so the MN theorem gives us a DFA for $X$ with three states. Which statement about this DFA is false?
- (a) The initial state is for the class of $\lambda$.
- (b) The a-arrow and b-arrow from each state always go to different states.
- (c) The b-arrow from the class of a goes to the class of ab .
- (d) The class of $\lambda$ is final and the other two are not.


## Answer \#3

- Again let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and let $\mathrm{X}=\left(\Sigma^{3}\right)^{*}$. We saw earlier that there are three $X$-equivalence classes, so the MN theorem gives us a DFA for $X$ with three states. Which statement about this DFA is false?
- (a) The initial state is for the class of $\lambda$.
- (b) The a-arrow and b-arrow from each state always go to different states. (They actually go to the same state.)
- (c) The b-arrow from the class of a goes to the class of $a b$.
- (d) The class of $\lambda$ is final and the other two are not.


## The Minimal DFA

- Let $X$ be a regular language and let $M$ be any DFA such that $L(M)=X$.
- We will show that the minimal DFA, constructed from the classes of the Lequivalence relation, is contained within M.
- We begin by eliminating any unreachable states of M, which does not change M's language.


## The Minimal DFA

- Remember that a correct DFA cannot take two L-distinguishable strings to the same state.
- So for any state $p$ of $M$, the strings $w$ such that $\delta(\mathrm{i}, \mathrm{w})=\mathrm{p}$ are all L-equivalent to each other.
- Each state of $M$ is thus associated with one of the classes of the L-equivalence relation.


## Minimizing a DFA

- The states of $M$ are thus partitioned into classes themselves.
- If we combine each class into a single state, we get the minimal DFA.
- In discussion on Wednesday we will see, and then practice, a specific algorithm that will find these classes. It thus will construct the minimal DFA equivalent to any given DFA.

