CMPSCI 250: Introduction to Computation

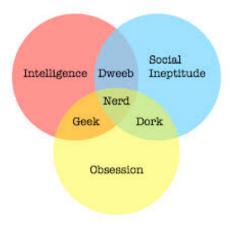
Lecture #3: Set Operations and Truth Table Proofs
David Mix Barrington
9 September 2013

Set Operations and Truth Tables

- Venn and Carroll Diagrams
- Set Operations
- Propositions About Sets
- The Setting for Propositional Proofs
- How to Do a Truth Table Proof
- A Truth Table Proof Example

Venn Diagrams

• Here's a way to describe a group of sets.



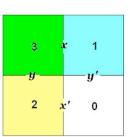
Venn Diagrams

• The three large sets each divide the type into two groups: the elements in it and those not in it.

- This creates $2^3 = 8$ total groups, from the three choices.
- This **Venn Diagram** has seven colored regions, and an eighth white region in none of the sets.

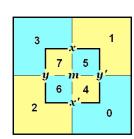
Carroll Diagrams

- Lewis Carroll (author of Alice in Wonderland) had his own diagrams he liked better than Venn's.
- This diagram represents the four combinations of being in set x or not, and being in set y or not. For example, region 2 is in y but not in x.
- Unlike Venn, he treats the four regions equally.

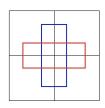


More Carroll Diagrams

 In the top diagram we represent three sets, with m the set inside the central box. Region 5 is in m and x but not in y.



- Binary for 5 is 101, with the three bits for yes-m, no-y, yes-x.
- The bottom diagram represents the 16 regions for four sets.



Set Operations

We have a number of binary
 operations on sets, that take two
 sets as input and give one set as output.

 $X \cap Y$

 If X and Y are sets, their intersection X ∩ Y is the set of all elements in both, and their union X ∪ Y is the set of all elements in either X or Y.

 $\mathbf{X} \cup \mathbf{Y}$

• The **relative complement** X \ Y is the set of all elements in X but not in Y.

 $Y \setminus X$

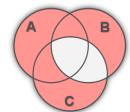
Two More Set Operations

The symmetric difference X
 ΔY is the set of elements that are in either X or Y, but not both.

 The complement of X, written as X with a line over it, is the set of all elements in the universe (or data type) that are not in X.

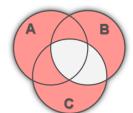
Practice Clicker Question #1

- What set is denoted in red?
- (a) $(A \cup B \cup C) \setminus (B \cap C)$
- (b) $(A \cap B \cap C) \setminus (B \cap C)$
- (c) $(A \cup B \cup C) \setminus (B \Delta C)$
- (d) A \cup (B \triangle C)



Answer #1

- What set is denoted in red?
- (a) $(A \cup B \cup C) \setminus (B \cap C)$
- (b) $(A \cap B \cap C) \setminus (B \cap C)$
- (c) $(A \cup B \cup C) \setminus (B \Delta C)$
- (d) $A \cup (B \Delta C)$



Propositions About Sets

- Given two sets X and Y, we can form the propositions X = Y and $X \subseteq Y$. We can also use the = and \subseteq operators on more complicated sets formed with the set operators, for example $(X \setminus Y) \cap (Y \setminus X) = \emptyset$.
- This last statement is an example of a set identity because it is true no matter what the sets X and Y are. Since every element of X \ Y is in X, and none of the elements of Y \ X are in X, no element could be in both.

Membership Statements

- Equality and subset statements about sets are actually compound propositions involving membership statements for the original sets.
- For example, X = Y means that for any object z of the correct type, the propositions $z \in X$ and $z \in Y$ are either both true or both false, so that " $z \in X \leftrightarrow z \in Y$ " is true.
- Similarly, $X \subseteq Y$ means that for any $z, z \in X$ implies $z \in Y$, so we have " $z \in X \rightarrow z \in Y$ ".

Set Identities With Set Operators

- A set statement like $(X \setminus Y) \cap (Y \setminus X) = \emptyset$, using set operations and the equality or subset operator, can be translated into a compound proposition.
- We want to say $z = (X \setminus Y) \cap (Y \setminus X) \leftrightarrow z \in \emptyset$. But the statement on the left of the \leftrightarrow can be simplified, to $z \in (X \setminus Y) \land z \in (Y \setminus X)$.
- Using the definition of \setminus , this can be further simplified to $(z \in X \land \neg (z \in Y)) \land (z \in Y \land \neg (z \in X))$.

Using Variables for Each Set

- If we define the boolean x to mean $z \in X$ and the boolean y to mean $z \in Y$, we can rewrite the whole statement " $(z \in X \land \neg (z \in Y)) \land (z \in Y \land \neg (z \in X))$ " as $(x \land \neg y) \land (y \land \neg x) \leftrightarrow 0$, where we use 0 to mean "false".
- This compound proposition is a tautology.
- In the same way we can translate any set statement, because each set operation corresponds exactly to a boolean operation on membership statements.

Practice Clicker Question #2

- Let r denote the proposition " $x \in R$ ", s denote " $x \in S$ ", and t denote " $x \in T$ ". Which of the following is denoted by $r \land (s \oplus t)$?
- (a) $x \in (R \cap S) \Delta T$
- (b) $x \in R \cup (S \Delta T)$
- (c) $x \in R \cap (S \Delta T)$
- (d) $x \in (R \cup S) \Delta T$

Answer #2

- Let r denote the proposition " $x \in R$ ", s denote " $x \in S$ ", and t denote " $x \in T$ ". Which of the following is denoted by $r \land (s \oplus t)$?
- (a) $x \in (R \cap S) \Delta T$
- (b) $x \in R \cup (S \Delta T)$
- (c) $x \in R \cap (S \Delta T)$
- (d) $x \in (R \cup S) \Delta T$

The Setting for PropCalc Proofs

- The propositional calculus lets us form compound propositions from atomic propositions, and then ask questions about them.
- Is a given statement P a **tautology**? If we know that a **premise** statement P is true, does that guarantee that another **conclusion** statement C is also true? Given two statements P and Q, are they **equivalent**?
- Verifying tautologies solves all three of these questions, because they ask whether P, P → C, and P ↔ Q respectively are tautologies.

The Bigger Picture

- In this lecture we'll see how to verify a tautology with a **truth table**.
- Next week we'll see how to verify that an implication or an equivalence is a tautology with a deductive sequence proof or an equational sequence proof.
- Sequence proofs can be much shorter than the corresponding truth tables, but they require creativity to produce.

How to Do a Truth Table Proof

- The idea of a truth table proof is that if we have k atomic propositions, there are 2^k possible settings of the truth values of those propositions. If a given compound proposition is true in all of those cases, it is a tautology.
- We need to evaluate the compound proposition systematically, in all the cases. We begin by listing the cases, which we can do by counting in binary from 0 to 2^k - 1, which is from 00...0 to 11...1. (This is much less error-prone than trying to get all the cases in some arbitrary order.)

How to Do a Truth Table Proof

- The basic idea is that under each symbol of the compound proposition, we will have a column of 2k 0's and 1's to represent the values, in each case, of the compound proposition associated with that symbol.
- We begin with the occurrences of the variables, then calculate new columns in the order that operations are used to evaluate the compound proposition.

A Truth Table Example

• Let's take the formula $(x \land \neg y) \land (y \land \neg x) \leftrightarrow$

0. There are four cases 00, 01, 10, and 11, where the first bit is the truth value of x and the second that of y. We write the correct column under each occurrence of a variable. We also write a column of all 0's under the 0, since this symbol always has the value 0.

x	У	(x	Λ ¬ у) ^ (у	^¬х)	, ↔ (
0	0	0	0	0	0	0
0	1	0	1	1	0	0
1	0	1	0	0	1	0
1	1	1	1	1	1	0

Continuing The Example

Next we fill in the columns for the ¬ operations:

х	У	(x	٨	7	y)	٨	(у	٨	7	x)	\leftrightarrow	0
0	0	0		1	0		0		1	0		0
0	1	0		0	1		1		1	0		0
1	0	1		1	0		0		0	1		0
1	1	1		0	1		1		0	1		0

Continuing The Example

• Then the two \wedge operations inside the parentheses:

Х	У	(x	٨	_	у)	٨	(у	٨	7	x)	\leftrightarrow	0
0	0	0	0	1	0		0	0	1	0		0
0	1	0	0	0	1		1	1	1	0		0
1	0	1	1	1	0		0	0	0	1		0
1	1	1	0	0	1		1	0	0	1		0

Continuing The Example

ullet Then the last \wedge operation:

Finishing the Example

