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DFS and BFS on Graphs

• Storing the Entire Search Space

• The DFS Tree of a Undirected Graph

• The DFS Tree of a Directed Graph

• Four Kinds of Edges

• The BFS Tree of a Undirected Graph

• The BFS Tree of a Directed Graph



Storing the Entire Search Space

• In CMPSCI 311 you’ll spend considerable time 
on search problems where the entire graph is 
given to you, usually as an adjacency list 
where for each node we have a list of the edges 
out of it.

• Given two nodes s and t in the graph, we can 
ask whether there is a path from s to t, how 
long the shortest path from s to t might be 
(measured by number of edges or measured by 
the total cost of the edges), or whether s and t 
remain connected if certain edges are deleted.



Storing the Entire Search Space

• With the whole graph stored (or using a 
closed list to remember what we’ve seen), we 
avoid processing the same node twice.

• Both DFS and BFS on graphs will allow us to 
create a tree from the graph, which will 
allow us to address these various problems 
more easily.



DFS Trees of Undirected Graphs

• Recall that our DFS algorithm places nodes 
onto a stack when they are discovered, and 
processes all their edges when they are taken 
off the stack.

• Our DFS tree will have a tree edge from s 
to t if we encounter t for the first time while 
we are processing s, that is, if we discover t 
through its edge from s.  The tree edges form 
a tree that gives a path from the start node 
to each node that is reachable from it.



DFS Trees of Undirected Graphs

• If we defined the DFS recursively, the DFS 
tree would be essentially the call tree, 
because if (s, t) were a tree edge we would 
make the recursive call with parameter t in 
the course of processing the call with 
parameter s.

• A DFS of an undirected graph searches the 
entire connected component of the 
start node.  What can we tell about the edges 
that aren’t tree edges?



Tree Edges and Back Edges

• Let G be a connected 
undirected graph and let T 
be its DFS tree.  

• If G were a graph-theoretic 
tree, T and G would be the 
same graph (more precisely, 
T would be the rooted tree 
made from G with the start 
node as root). 
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Tree Edges and Back Edges

• But if while processing node s, we find an 
edge to a node t that is not new, that edge 
does not go into T.  (We’ll ignore the reverse 
directions of tree edges.)  

• Note that the processing of t must still be 
going on at this point, because we don’t finish 
processing t until we’ve finished all the nodes 
reachable from it, including s.  So t must be an 
ancestor of s in the tree, and the edge (s, t) 
is thus called a back edge.



Tree Edges and Back Edges

• Here’s an example where the 
undirected graph G becomes 
a rooted tree T together 
with some back edges.  

• An articulation point is 
a node whose removal 
disconnects the graph.  Can 
you tell what condition on 
the tree and back edges 
makes t such a point?
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Clicker Question #1

• Which condition on the DFS tree of an 
undirected graph will prevent node X from 
being an articulation point?

• (a) Every child of X has an ancestor with an 
edge to a descendent of X.

• (b) Every child of X has a descendent with an 
edge to an ancestor of X.

• (c) X is the root and has more than one child.

• (d) X has a back edge to an ancestor of X.



Answer #1

• Which condition on the DFS tree of an 
undirected graph will prevent node X from 
being an articulation point?

• (a) Every child of X has an ancestor with an 
edge to a descendent of X.

• (b) Every child of X has a descendent with an 
edge to an ancestor of X.

• (c) X is the root and has more than one child.

• (d) X has a back edge to an ancestor of X.



DFS Trees of Directed Graphs

• When we make a DFS of a 
directed graph, we still reach every 
node that is reachable from the 
start node.  

• But it’s no longer guaranteed that 
any or all of those nodes have 
paths back to the start point -- we 
no longer necessarily have a 
connected component to search.
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Strongly Connected Components

• Problem 9.6.2 (not assigned this term) has you 
work out how to use the DFS algorithm to find 
the strongly connected components of 
a directed graph -- the equivalence classes of 
the equivalence relation P(x, y) ⋀ P(y, x).  

• If there is a back edge from a node t to an 
ancestor u, then all the nodes on the tree path 
from u down to t are in the same strongly 
connected component because they lie on a 
directed cycle.



DFS of a Directed Graph

• In a directed graph we can no longer 
guarantee that all the edges are either tree 
edges or back edges -- what are the other 
possibilities?

• Let (u, v) be an arbitrary edge in a directed 
graph G.  In what different ways could (u, v) 
be encountered in a DFS of G?



Tree and Forward Edges

• If we find u before v and 
first find v through the edge 
(u, v), it is a tree edge.

• If we find u before v, but 
find v through one of its 
siblings before we look at 
the edge (u, v), then (u, v) 
becomes a forward edge 
from u to a descendant.
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Back and Cross Edges

• If we find v before u, and find 
u while we are still 
processing v, then the edge 
(u, v) becomes a back edge 
just as in the undirected case.

• If we find v before u and 
finish v before finding u 
(because there is no path 
from v to u), then (u, v) 
becomes a cross edge.
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Clicker Question #2

• What type of edge will 
the green edge become, 
if we do a DFS from A 
and always take 
neighbors alphabetically?

• (a) tree edge 

• (b) back edge

• (c) forward edge

• (d) cross edge
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Answer #2

• What type of edge will 
the green edge become, 
if we do a DFS from A 
and always take 
neighbors alphabetically?

• (a) tree edge 

• (b) back edge

• (c) forward edge

• (d) cross edge
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BFS Trees of Undirected Graphs

• A breadth-first search gives rise to tree edges 
in the same way -- (u, v) is a tree edge if we 
encounter v during the processing of u, and 
put v on the queue.  

• The BFS tree is made up of all the tree 
edges, and is a rooted tree giving a shortest 
path (in number of edges) from the start 
node to each edge. 

• If there are multiple shortest paths, the 
algorithm will choose one as the tree path.



BFS Trees of Undirected Graphs

• If u is at level k of the tree, and (u, v) is a non-
tree edge, we know that v has already been 
put on the queue before the edge is seen.  

• If it is still on the queue, it must be also at 
level k.  

• If it has been finished, it must be at level k-1, 
because otherwise (in an undirected graph) 
we would have missed a shorter path from 
the start node to u by way of v.



Bipartite Graphs

• An undirected graph is 
bipartite if and only if 
we never get an edge from 
one node to another at 
the same level.  

• This follows from the 
theorem that an 
undirected graph is 
bipartite if and only if it has 
no odd-length cycles.)
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Clicker Question #3

• Let G be a connected undirected graph.  Three of 
these conditions on G are equivalent -- which 
one is different from the others?

• (a) If x and y are nodes, the paths from x to y are 
either all even length or all odd length.

• (b) G has no triangles (i.e., no cycles of length 3).

• (c) G is bipartite.

• (d) The nodes of G can be two-colored so that 
no edge has two endpoints of the same color.



Answer #3

• Let G be a connected undirected graph.  Three of 
these conditions on G are equivalent -- which 
one is different from the others?

• (a) If x and y are nodes, the paths from x to y are 
either all even length or all odd length.

• (b) G has no triangles (i.e., no cycles of length 3).

• (c) G is bipartite.

• (d) The nodes of G can be two-colored so that 
no edge has two endpoints of the same color.



BFS Trees of Directed Graphs

• In a BFS of a directed graph, the BFS tree will 
arrange the nodes into levels, based on their 
shortest-path distance from the start node 
(where again “shortest” means “fewest 
edges”).  

• If u is at level k and we find v for the first 
time while processing u, then (u, v) will be a 
tree edge and v will be at level k + 1.



BFS Trees of Directed Graphs

• But if v has already been seen, it might be at 
any existing level of the tree from 0 to k or 
even k + 1, or might even not be in the tree 
at all!  

• Remember that if a DFS or BFS finishes 
without reaching all the nodes, we start a 
new tree at a new start point.  The node v 
might be in an earlier tree (which didn’t 
contain a path to u), but still have an edge 
from u.


