CMPSCI 250: Introduction to Computation

Lecture \#22: Graphs, Paths, and Trees
David Mix Barrington
23 October 2013

Graphs, Paths, and Trees

- Graph Definitions
- Paths and the Path Predicate
- Cycles, Directed and Undirected
- Forests and Trees
- The Unique Simple Path Theorem
- Rooted Trees
- A Theorem About Trees

Graph Definitions

- A graph is a set of points called nodes or vertices, together with a set of edges.
- In an undirected graph each edge connects two different nodes.
- In a directed graph each edge (or arc) goes from some node to some node, possibly the same one.

The Edge Predicate

- Two graphs are considered to be equal if their edge predicates are the same.
- The edge predicate $E(x, y)$ takes two nodes x and y as arguments, and is true if there is an edge from x to y (or between x and y, in the case of an undirected graph).
- There are also multigraphs, which are allowed to have more than one edge with the same starting point and ending point.
- Graphs can be labelled by assigning some information to each node or edge.

Paths and the Path Predicate

- A path in a graph is a sequence of edges, where the endpoint of each edge is the starting point of the next edge.
- We can have undirected paths in an undirected graph or directed paths in a directed graph.
- The path predicate $P(x, y)$ is true if and only if there is a path from node x to node y. We define the path predicate and the set of paths recursively.

Clicker Question \#I

- Which of the following statements is false?
- (a) For any vertex x in an undirected graph, there exists a vertex y such that $P(x, y)$ is true.
- (b) If x and y are any two vertices in an directed graph, then $P(x, y) \rightarrow P(y, x)$ is true.
- (c) It is possible in a directed graph for $P(x, y)$ and $P(x, z)$ to be true, but for $P(y, z)$ to be false.
- (d) If x and y are any two vertices in a undirected graph, then $P(x, y) \rightarrow P(y, x)$ is true.

Answer \#I

- Which of the following statements is false?
- (a) For any vertex x in an undirected graph, there exists a vertex y such that $P(x, y)$ is true.
- (b) If x and y are any two vertices in an directed graph, then $P(x, y) \rightarrow P(y, x)$ is true.
- (c) It is possible in a directed graph for $P(x, y)$ and $P(x, z)$ to be true, but for $P(y, z)$ to be false.
- (d) If x and y are any two vertices in a undirected graph, then $P(x, y) \rightarrow P(y, x)$ is true.

More About Paths

- For any node $x, P(x, x)$ is true and the empty path λ is a path from x to x.
- If α is a path from x to y, and there is an edge from y to z, then $P(x, z)$ is true and β is a path from x to z, where β consists of α followed by the edge (y, z).
- Thus if $P(x, y)$ and $E(y, z)$ are both true, then $P(x, z)$ is true.

Transitivity of Paths

- It stands to reason that if there is a path α from node x to node y, and a path β from node y to node z, then there exists a path from node x to node z obtained by first taking α and then taking β.
- Proving this will take an induction on the second path β, using the recursive definition of paths.

Proving Transitivity

- The base case is when β is an empty path. In this case α, which is a path from x to y, is also the desired path from x to z because $y=z$.
- For the inductive case, assume that β is made by adding an edge (w, z) to some path γ from y to w, and that the IH applies to γ. So there exists a path from x to w made from α and γ. By the definition of paths, we can add the edge (w, z) to this path and get the desired path from x to z.

Cycles

- A cycle is a path from a node to itself that meets certain "non-triviality" conditions.
- In an undirected graph, a cycle is a simple nonempty path from a node to itself, which means a path that does not reuse a node or edge.
- An undirected cycle must have three or more edges.

Cycle Vocabulary

- A directed cycle in a directed graph is any nonempty directed path from a node to itself.
- A graph is acyclic if it has no cycles.
- A directed acyclic graph or DAG is a directed graph with no directed cycles.
- Acyclic undirected graphs (with no undirected cycles) are called forests.

Clicker Question \#2

- Which of these directed graphs does not have a directed cycle?
(a)

(b)

(c)

(d)

Answer \#2

- Which of these directed graphs does not have a directed cycle?
(a)

(b)

(c)

(d)

Forests and Trees

- Any undirected graph can be divided into connected components.
- It is easy to show that the path predicate in an undirected graph is an equivalence relation, and we define the connected components to be the equivalence classes of this relation.
- They are the maximal subgraphs that are connected -- a node's connected component is the subgraph formed by all the nodes to which it has a path.

Forests and Trees

- An undirected graph with no cycles is called a forest because it is divided into one or more connected components called trees.
- A tree, in graph theory, is a connected undirected graph with no cycles. Remember that we can draw a graph with the nodes and edges anywhere, as long as the edges connect the correct nodes. So a graph-theoretic tree may or may not look like the other trees in computer science.

Small Graph-Theoretic Trees

- Trees of one, two, or three nodes have only one shape per size.
- There are two shapes of four-node trees, and three shapes of five-node trees.

Unique Simple Path Theorem

- Theorem: If x and y are nodes in a tree T, there is exactly one simple path in T from x to y. (Remember that a simple path is one that does not reuse a node or edge.)
- Proof: First, there must be at least one path because a tree is defined to be a connected graph, where every node has a path to every other node.

Unique Simple Path Theorem

- Could there be two different simple paths α and β from x to y ? Suppose there were. Let z be the first node where the two paths split (\mathbf{z} might be x). Let u be the next node after z on α, and v be the next node after z on β. Note that z, u, and v are three different nodes.

Unique Simple Path Theorem

- There must be some point w, at or after u on α and at or after v on β, that is on both paths. (Certainly y is such a point, but let w be the earliest one, which might be u or v.)
- Then there is a simple path from z to u to w to v to z, and since this path has at least three edges, it is a cycle. But T is a tree, so our assumption that there were two paths has led to a contradiction.

Rooted Trees

- A rooted tree is a graph-theoretic tree with one of its nodes designated as the root. We can make a directed tree out of the undirected rooted tree by directing every edge away from the root.
- If we now draw such a tree with the root at the top, it looks like other "trees" we have seen in computer science.

Rooted Tree Vocabulary

- If we call the root Level 0 , we have its children at level I, the nodes to which it now has directed edges. Level I nodes have children at Level 2, and so forth.
- The depth of a tree is its largest level number, which is the length of the longest directed path from the root.
- Nodes with no children are called leaves.

Clicker Question \#3

- Here are four undirected trees, each with a designated root node. If we make each into a rooted tree with that root, which has a depth of exactly 2 ?
(a)

(b)

(c)

(d)

Answer \#3

- Here are four undirected trees, each with a designated root node. If we make each into a rooted tree with that root, which has a depth of exactly 2 ?
(a)

(b)

(c)

(d)

Examples of Trees

- Such trees model many kinds of hierarchies, such as parts of an organization, inheritance of classes in Java, or the hierarchy of directories (folders) on a computer.

A Recursive Tree Definition

- A single node, with no edges, is a rooted tree and the node is its root.
- We can make a rooted tree out of one or more existing rooted trees plus a new node x. The root of the new tree is x , and we add edges from x to the roots of each of the existing trees.
- The only possible rooted trees are those made by the two rules above.

Induction on Rooted Trees

- This is a recursive definition of rooted trees.
- As with our other recursively defined types, we now have a new Law of Mathematical Induction for rooted trees.
- If we prove $P(T)$ whenever T has only one node, and that $P(T)$ is true when T is made from subtrees $U_{1}, U_{2}, \ldots, U_{k}$ and $P\left(U_{i}\right)$ is true for all i, then we may conclude that $P(T)$ is true for any rooted tree T .

A Theorem About Rooted Trees

- Let's use this induction rule to prove a theorem.
- Theorem: IfT is any rooted tree with n nodes and e edges, then $\mathrm{e}=\mathrm{n}-\mathrm{I}$.
- Base Case: IfT is a one-node tree, then $\mathrm{e}=0$ and $n=I$ so $e=n-I$ is true.
- Now we have to set up the inductive step.

A Theorem About Rooted Trees

- Inductive Step: Let T be made by the second rule from $U_{1}, U_{2}, \ldots, U_{k}$ and say that each of the U_{i} 's has n_{i} nodes and e_{i} edges, so that $e_{i}=$ $n_{i}-I$ by the IH.
- T has all the nodes and edges from all the subtrees, plus one new node (its root) and k new edges (one from its root to each of the existing roots).

A Theorem About Rooted Trees

- So n , the number of nodes in T , is the sum of the n 's plus I.
- And e, the number of edges in T, is the sum of the ei's plus k.
- The sum S of the ei's is the sum of the n's minus k, so $e=S+k$ and $n=(S+k)+I$, and therefore $=\mathrm{n}-\mathrm{I}$.
- We've completed the inductive step and thus proved our $\mathrm{P}(\mathrm{T})$ for all rooted trees T .

