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Definition of a Partial Order

• A partial order is a particular kind of 
binary relation on a set.  Remember that R is 
a binary relation on a set A if R ⊆ A × A, 
that is, if R is a set of ordered pairs where 
both elements of every pair are from A.

• Last time we used quantifiers to define four 
particular properties that a binary relation on 
a set might have.  

• A relation is a partial order if and only if it is 
reflexive, antisymmetric, and transitive.



Properties of a Partial Order

• A relation R is reflexive if every element is 
related to itself -- in symbols, ∀x: R(x, x).  

• It is antisymmetric if the order of elements in 
a pair can never be reversed unless they are the 
same element -- in symbols, ∀x: ∀y: (R(x, y) ∧ R(y, 
x)) → (x = y). 

•  Finally, R is transitive if ∀x: ∀y: ∀z: (R(x, y) ∧ R(y, 
z)) → R(x, z).  This says that a chain of pairs in the 
relation must be accompanied by a single pair 
whose elements are the start and end of the chain.



Diagrams of Binary Relations

• If A is a finite set and R is a 
binary relation on A, we can 
draw R in a diagram called a 
graph.  We make a dot for 
each element of A, and draw 
an arrow from the dot for x 
to the dot for y whenever 
R(x, y) is true.  If R(x, x), we 
draw a loop from the dot for 
x to itself.
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Seeing the Properties

• The properties are 
perhaps easier to see in 
one of these diagrams. 

• A relation is reflexive if 
its diagram has a loop at 
every dot.  

• It is symmetric if every 
arrow (except loops) 
has a matching opposite 
arrow.  



Seeing the Properties

• It is antisymmetric if there are 
never two arrows in opposite 
directions between two 
different nodes.  

• It is transitive if for every path 
of arrows (a chain where the 
start of each arrow is the end 
of the previous one) there is a 
single arrow from the start of 
the chain to the end.



Clicker Question #1

• Which property does the 
diagrammed relation not 
have?

• (a) reflexive

• (b) symmetric

• (c) antisymmetric

• (d) transitive



Answer #1

• Which property does 
the diagrammed 
relation not have?

• (a) reflexive

• (b) symmetric

• (c) antisymmetric

• (d) transitive



Total Orders

• When we studied sorting in CMPSCI 187, 
we assumed that the elements to be sorted 
came from a type with a defined comparison 
operation.  

• Given any two elements in the set, we can 
determine which is “smaller” according to the 
definition.  (In Java the type would have a 
compareTo method or have an associated 
Comparator object.)



Total Orders

• The “smaller” relation is not normally 
reflexive, but the related “smaller or equal to” 
relation is.  

• Both these relations are normally 
antisymmetric, unless it is possible for the 
comparison relations to have ties between 
different elements.  

• And both relations are transitive, just as ≤ is 
on numbers.



Total Orders

• But ordered sets have an additional property 
called being total, which we write in symbols as 
∀x: ∀y: R(x, y) ∨ R(y, x).  

• In general a partial order need not have this 
property -- two distinct elements could be 
incomparable.  

• For example, the equality relation E, defined by 
E(x, y) ↔ (x = y), is reflexive, antisymmetric, and 

transitive, but any two distinct elements are 
incomparable.



The Division Relation

• Here’s another example of a partial order 
that is not total.  

• Our base set will be the natural numbers {0, 
1, 2, 3,...}, and we define the division relation 
D so that D(x, y) means “x divides into y 
without remainder”.  

• In symbols, D(x, y) means ∃z: x⋅z = y.  (Here 
we use the dot operator ⋅ for multiplication.)



The Division Relation

• Any natural divides 0, but 0 divides only itself.  
D(1, y) is always true. D(2, y) is true for even 
y’s (including 0) but not for odd y’s.  D(100, x) 
is true if and only if the decimal for x ends in 
at least two 0’s.  

• In discussion next week we’ll look at some 
tricks to determine whether D(k, y) is true 
for some particular small values of k.



Division is a Partial Order

• It’s easy to prove that D is a partial order.  

• D(x, x) is always true because we can take z 
to be 1 and x ⋅ 1 = x.  

• If D(x, y) and D(y, x) are both true, x must 
equal y because D(x, y) implies that x ≤ y.  

• And if D(x, y) and D(y, z), then there exist 
naturals u and v such that x⋅u = y and y⋅v = 
z, and then we see that x⋅(u⋅v) = z.



More Partial Order Examples

• There are several easily defined partial orders 
on strings.  

• We say that u is a prefix of v if ∃w: uw = v.  
(Here we write concatenation as algebraic 
multiplication.)  We say u is a suffix of v if 
∃w: wu = v.  And u is a substring of v if ∃w: 
∃z: wuz = v.  

• It’s easy to check that each of these relations 
is reflexive, antisymmetric, and transitive.



Clicker Question #2

• Let Σ be the alphabet {a, b} and consider the 
prefix, suffix, and substring relations on Σ*.  Which 
of these statements is false?

• (a) ab is a prefix of aba and aa is a substring of aba

• (b) λ is a suffix of aba and λ is a substring of aba

• (c) a is a suffix of aba and ba is a substring of aba

• (d) aba is a prefix of aba and aba is a suffix of aba



Answer #2

• Let Σ be the alphabet {a, b} and consider the 
prefix, suffix, and substring relations on Σ*.  Which 
of these statements is false?

• (a) ab is a prefix of aba and aa is a substring of aba

• (b) λ is a suffix of aba and λ is a substring of aba

• (c) a is a suffix of aba and ba is a substring of aba

• (d) aba is a prefix of aba and aba is a suffix of aba



More Partial Order Examples

• Inclusion on sets is another partial order, as 
X ⊆ X, X ⊆ Y and Y ⊆ X imply X = Y, and X ⊆ 
Y and Y ⊆ Z imply X ⊆ Z.

• The subclass relation on Java classes is a 
partial order, since every class is a subclass of 
itself, two different classes can never each be 
subclasses of the other, and a subclass of a 
subclass is a subclass.  



More Partial Order Examples

• We represent this relation 
by an object hierarchy 
diagram in the form of a 
tree.  

• One class is a subclass of 
another if we can trace a 
path of extends 
relationships in the 
diagram from the subclass 
up to the superclass.  

Object

Dog

TerrierRottweiler

Cairn Terrier



Hasse Diagrams

• We make a Hasse diagram 
by making a dot for each 
element of the set, and 
making lines so that R(x, y) 
is true if and only if there 
is a path from x up to y.  

• (Relative position of points 
in a graph usually doesn’t 
matter, but here it does.)

Relation D on Divisors of 60
(wikipedia.org)



Clicker Question #3

• To the left is a Hasse 
diagram for the division 
relation on part of 𝗡.  
Which number could 
go in the place of x?

• (a) 4

• (b) 6

• (c) 7

• (d) 9

12

xz

y532

1

15



Answer #3

• To the left is a Hasse 
diagram for the division 
relation on part of 𝗡.  
Which number could 
go in the place of x?

• (a) 4

• (b) 6

• (c) 7

• (d) 9

12

15xz

y532
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Hasse Diagram

• Starting from the graph of a 
partial order, we make a 
Hasse diagram as follows.

• We first delete the loops.

• We then position the does 
so the all arrows go upward.

• Finally we delete arrows that 
are implied by transitivity 
from other arrows.

Inclusion on Sets
(wikipedia.org)



The Hasse Diagram Theorem

• A Hasse diagram is a convenient way to 
represent a partial order if we can make one.  

• But if I am just given R and told that it is a 
partial order, can I always make a Hasse 
diagram for it?  

• The potential problem comes with the rule 
that the points must be arranged so that 
every arrow goes upward.



The Hasse Diagram Theorem

• The Hasse Diagram Theorem says that 
any finite partial order is the “path-below” 
relation of some Hasse diagram, and the 
“path-below” relation of any Hasse diagram is 
a partial order.

• The second of these two statements is easy 
to prove -- we just have to check that the 
path-below relation is reflexive, 
antisymmetric, and transitive.

• We’ll sort of prove the first statement here.



Proving the Theorem

• Given the relation R, when do we want an 
arrow from x up to y?

• There should be an arrow if R(x, y) is true 
and ¬∃z: (x ≠ z) ∧ (z ≠ y) ∧ R(x, z) ∧ R(z, y).  
(That z would make an x-y arrow redundant.)

• To start drawing the diagram, we need an 
element that we can safely put at the 
bottom, because it has no arrows into it.  



Proving the Theorem

•  An element x is called minimal for R if ∀y: 
R(y, x) → (x = y).  

• A finite partial order must have at least one 
minimal element, because we can start 
somewhere and keep taking smaller elements 
until none exist.  

• This process can’t lead to a cycle because R 
is antisymmetric.



Proving the Theorem

• We build the diagram recursively by finding a 
minimal element, making a Hasse diagram for 
the set without that element, and then 
putting the minimal element back at the 
bottom, with the arrows given by the rule 
above.

• To finish the proof, we have to make sure that 
the path-below relation of this diagram we’ve 
constructed is really R.


