
CMPSCI 187: Programming With Data Structures

Lecture 5: Analysis of Algorithms Overview
14 September 2012



Analysis of Algorithms Overview

• What is Analysis of Algorithms?

• Example: Summing Consecutive Integers

• Example: Finding a Number in a Phone Book

• Being Usefully Vague About Functions

• Important Classes of Growth Functions

• Determining Time Complexity From Code



What is Analysis of Algorithms?

• We want to talk about the resources, usually time, used by an algorithm, as a 
function of the input size.

• The time may be different for different inputs of the same size -- we take the 
worst-case time because we want to make a guarantee to the user.

• The time complexity of an algorithm is a function with the number of input 
bits as its input, and the worst-case running time (in seconds, say, or in clock 
cycles) as the output.

• But such a function is very hard to work with.  We need to develop a better 
mathematical way of talking about such functions, called asymptotic 
analysis or big-O notation.



Example: Summing Consecutive Integers

• Suppose that we are asked to write a method that takes a parameter n (which 
must be a non-negative integer) and returns the sum of the numbers from 1 
through n.  (CMPSCI 250 preview: What is the correct output if n = 0?)

• The first method below will take a number of steps proportional to the input 
n.  The actual function giving the number of steps will be something of the 
form an+b, a linear function.  But the second method will take the same 
number of operations no matter what value n has.

public int firstMethod (int n){
   int sum = 0;
   for (int i = 1; i <= n; i++)
      sum += i;
   return sum;}

public int secondMethod (int n){
   return (n * (n+1))/2;}



Example: Finding Numbers in a Phone Book

• Before the internet, we used to have large paper volumes called phone 
books that contained the telephone number for every subscriber in a certain 
area, in alphabetical order by the subscriber’s name.  (You can still find these 
books around today, and you may even have used one.)

• If you want to find a particular person’s number, one method to do so would 
be to look at the first name in the book, then the second, then the third, and 
so on until you find the target name.  This linear search is a correct but not 
efficient algorithm if the names are in order, because you are not making any 
use of the order.  The time is again a linear function of n, the book’s size.

• A better method is binary search, where you keep a section of the book in 
mind that contains the name, and repeatedly try the middle name of this 
section so that you know whether the target is in the first or second half.

• As we’ll see later, binary search takes time proportional to the log of n.



Being Usefully Vague About Functions

• DJW look at the function N4 + 100N2 + 500.  On page 44 they have a table 
giving the values of each of the three pieces for various N.  For N = 1 the 
“500” gives most of the total of 601.  For N = 10 the first two pieces each give 
half the total of 20,500.  For N = 100 the first piece gives nearly all of the total 
of 101,000,500.

• The growth behavior of a polynomial in n, as n increases, depends primarily 
on the degree of the polynomial rather than the leading constant or the low-
order terms.  

• If we graphed 0.0001n2 against 10000n, the linear function would be larger for 
a long time, but the quadratic one would eventually catch up (in this case at n 
= 108.  Any quadratic with positive leading coefficient will eventually beat any 
linear.  So the linear term in a quadratic eventually does not matter.



Important Classes of Growth Functions

• There are a number of classes of growth functions that often occur in the 
analysis of algorithms.

• The first and perhaps more important is the class of constant functions, also 
called O(1) functions.  These don’t always have the same value, but they are 
bounded above by some constant.  For example, we might have dishes to 
wash that take varying time, but never more than 30 seconds.  This would be 
O(1) time.  It is often much easier to see that a process takes O(1) time than to 
find the actual constant.  We need to know that the time is independent of 
the input size.

• The other functions that DJW list on page 45 are logarithmic, n log n, 
quadratic, cubic, and exponential.  They have a table of values.

• In general “O(f)” means “grows proportionally with f(n)”, or more precisely “is 
bounded above by something that grows proportionally with f(n)”.



More on Classes of Growth Functions

• Many important behaviors of a function depend only on the growth class.

• Look at how doubling the input size affects the running time in each case.  
For a constant function, there is no change.  For a linear function, the running 
time doubles.  For a quadratic function, it multiplies by four.  For an 
exponential function, it goes way up -- for 2n it squares.

• Similarly, we can look at how a fixed speedup affects the maximum size you 
can handle in a given time.  A speedup of 10 means that a linear-time 
algorithm can handle 10 times as much input.  A quadratic-time algorithm can 
handle about 3 times as much.  A 2n time algorithm can handle three or four 
more inputs than it could before -- the speedup matters hardly at all.



Determining Time Complexity From Code

• It’s generally not too hard to tell when a piece of code takes O(1) or constant 
time.  You need to be sure that the behavior does not depend on the input 
size at all.

• If we have a loop like for (int i=0; i < n; i++) whatever(), where 
n is the input size, then we will execute whatever() at most n times.  We 
will also have some other steps to control the loop, but only a constant 
number for each time through.  

• Arithmetic with big-O is fun: We have (O(n) times O(1)) + (O(n) times O(1)), 
which is O(n) + O(n) = O(n).  



Determining Complexity From Code

• Another code example with nested loops:  if again the method call  
whatever() takes O(1) time, then the j-loop takes O(n) and the total loop 
takes O(n^2).   You might think that we get an advantage from not always 
taking n times through in the inner loop, but it’s only about half the time we 
would take from saying j < n instead.

for  (int i = 0, i < n, i++)
   for (int j = 0, j < i, j++)
      whatever( ); 



Running Time of Searches

• Our phone book example is one case of a general problem: Suppose we have 
n elements in an array and need to find a particular value if it is there.

• If there are n values and each has its own address, we just check that 
address.   This takes O(1) time because we just need a few indirect 
addressing steps.

• If the list is unsorted, we do a linear search from the beginning until or unless 
we find it.  In the worst case we spend O(1) time on each location for O(n) 
total.

• If the list is sorted, and we do a binary search, we take O(log n) time, 
enormously better than O(1).


