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Searching Graphs

• Review Graphs and Implementations

• The isPath Problem

• Using a Stack: Depth-First Search

• Using a Queue: Breadth-First Search

• The Single-Source Shortest-Path Problem

• Finding Shortest Paths With a Priority Queue



Review Graphs and Implementations

• Recall that a graph is a set of nodes (also called vertices) and a set of 
edges.  In an undirected graph, an edge is between two vertices without a 
direction.  In a directed graph, an edge is from one vertex to another.  We 
can also annotate edges with weights (often representing distance or cost of 
the edge) or other data.

• A path in a graph is a sequence of edges where the destination of each edge 
in the sequence is the source of the next edge.  The weight of a path is the 
sum of the weights of its edges.  A simple path is one that does not reuse 
any vertex.  If any path exists from vertex u to vertex v, so does a simple path.

• DJW give a WeightedGraphInterface with methods to add vertices, add 
edges, mark vertices, and get a queue of the neighbors of any vertex.  Last 
time we saw the WeightedGraph<T> class, whose objects are graphs with 
nodes from T and positive integer weights on the edges.  It is an array-based 
implementation of the interface, using a 1-d array for the vertices and a 2-d 
array for the edges.



Implementing Graphs With Linked Lists

• The array-based implementation, called an adjacency matrix, is the simplest 
way to represent graphs on a computer.  But on a graph with n vertices, it 
always takes O(n2) memory locations, one for each entry in the edge array.

• Graphs in applications are usually sparse, meaning that they have relatively 
few neighbors for each vertex.  A sparse graph of n vertices might have only 
O(n) edges, and its matrix would be mostly null edges.  Another 
representation called an adjacency list saves space, and can save time if the 
algorithms are designed to use it efficiently.

• An adjacency list has an array of linked lists of vertices, one for each vertex.  
The list for vertex v has all of v’s neighbors, so there is only one entry for each 
edge of a directed graph, or two for each edge of an undirected graph.  We 
can implement the methods of the weighted graph interface fairly easily.  For 
example, the queue of neighbors just takes its entries from the list for the 
given vertex.



The isPath Problem

• The simplest question about paths in a graph is whether one exists with a 
give source and destination.  We’ll define a boolean method isPath that 
takes two vertices as parameters and answers this question.  

• Once we can answer this, we know how to approach more complicated 
questions, like whether the whole set of vertices is connected (there is a path 
from any vertex to any other) or how to list the vertices in the same 
connected component as a given vertex.

• We’ll see three approaches to this problem.  Each works in the same way -- it 
keeps a set of reachable vertices in some data structure.  It advances its 
search by taking a vertex out of the structure, then putting any unseen 
neighbors it might have into the structure, until the goal node comes out of 
the structure or the structure becomes empty with no goal node found.

• What data structure we use determines the type of search.



Using a Stack: Depth-First Search

• It’s important that we mark vertices on their way into the stack, so we check only 
simple paths.  This method only tests for a path but we could return the path too.

private static boolean isPath (WGI<String> graph, String 
                               startVertex, String endVertex) {
   UnboundedStackInterface<String> stack = new LS<String>( );
   UnboundedQueueInterface<String> vertexQueue = new LUQ<String>( );
   boolean found = false; String vertex, item;
   graph.clearMarks( );
   stack.push(startVertex);
   do {vertex = stack.top( ); stack.pop( );
      if (vertex = endVertex) found = true;
      else if (!graph.isMarked(vertex)) {
         graph.markVertex(vertex);
         vertexQueue = graph.getToVertices(vertex);
         while (!vertexQueue.isEmpty( )) {
            item = vertexQueue.dequeue( );
            if (!graph.isMarked(item)) stack.push(item);}}
   while (!stack.isEmpty( ) && !found);
   return found;}



Using a Queue: Breadth-First Search

• The code here is almost identical with a queue replacing the stack.

private static boolean isPath2 (WGI<String> graph, 
                         String startVertex, String endVertex) {
   UQI<String> queue = new LinkedUnbndQueue<String>( );
   UQI<String> vertexQueue = new LinkedUnbndQueue<String>( );
   boolean found; String vertex, element;
   graph.clearMarks( );
   queue.enqueue(startVertex);
   do {vertex = queue.dequeue( );
      if (vertex = endVertex) found = true;
      else if (!graph.isMarked(vertex)) {
         graph.markVertex(vertex);
         vertexQueue = graph.getToVertices(vertex);
         while (!vertexQueue.isEmpty( )) {
            element = vertexQueue.dequeue( );
            if (!graph.isMarked(element)) queue.enqueue(element);}}
   while (!queue.isEmpty( ) && !found);
   return found;}



Comparing DFS and BFS
• Both isPath methods will examine most or all of the edges in the graph in the 

worst case.  If we use an array-based representation for the graph, with n 
vertices and e edges, we will spend O(n2) time making the vertex queues, but 
only O(1) time per edge otherwise.  The list-based representation will use only 
O(e) total time overall, which is faster if the graph is sparse.

• BFS has the advantage that it will always find a path with the fewest number 
of edges.  This is because, as we saw in Project #4, it puts all vertices one 
step from the start onto the queue, then all vertices two steps away, then all 
vertices three steps away, and so on until it finds the goal.  DFS might find a 
path that is not the shortest.  But if the shortest path is long, BFS could 
spend a lot of time looking at all the shorter paths, while DFS might hit upon 
the correct path quickly.

• BFS will use more memory in many cases, as there are typically more than r 
nodes at distance r from the start.

• Obligatory XKCD reference: http://xkcd.com/761



The Single-Source Shortest-Paths Problem

• The path found by BFS has the smallest number of steps, but if the steps 
have different weights it might not be the shortest path in terms of total 
weight.  A GPS system, for example, would want to return the best path 
according to some measure of cost, which might involve distance, travel time, 
or other factors.

• The single-source shortest-path problem is to take a start vertex x and 
determine the smallest-weight path from x to each other reachable vertex in 
the graph.  It turns out that the simplest way to search for the best path from 
x to y also finds the best path from x to every vertex in the graph that is closer 
to x than y is.

• The algorithm is very easy -- just search as we did for DFS and BFS, but put 
the vertices into a priority queue where the shortest distance from x is the 
criterion for the best vertex to dequeue.



Finding Shortest Paths With a Priority Queue

• This method makes a priority queue of Flight objects, which contain a start 
vertex, an end vertex, and a total distance.  The compareTo method of the 
Flight class treats objects with smaller distances as “larger”, so that they will 
be dequeued from the priority queue first.

• It takes a bit of reasoning to show this correct, which you’ll see in CMPSCI 250.
private static void shortestPaths(WGI<String> graph, 
                                  String startVertex) {
   Flight flight, saveFlight;
   int minDistance, newDistance;
   PQInterface<Flight> pq = new Heap<Flight>(20);
   String vertex;
   UQI<String> vertexQueue = new LinkedUnbndQueue<String>( );
   graph.clearMarks( );
   saveFlight = new Flight(startVertex, startVertex, 0);
   pq.enqueue(saveFlight);
   // main loop on next slide
   



Main Loop of shortestPaths Method

• We print out the Flight object for the shortest path to each vertex as found.
do {flight = pq.dequeue( );
      if (!graph.isMarked(flight.getToVertex( ))) {
         graph.markVertex(flight.getToVertex( ));
         System.out.println(flight);
         flight.getFromVertex(flight.getToVertex( ));
         minDistance = flight.getDistance( );
         vertexQueue = graph.getToVertices(flight.getFromVertex());
         while (!vertexQueue.isEmpty( )) {
            vertex = vertexQueue.dequeue( );
            if (!graph.isMarked(vertex)) {
               newDistance = minDistance + 
                  graph.weightIs(flight.getFromVertex( ), vertex);
               saveFlight = newFlight(flight.getFromVertex( ),
                                      vertex, newDistance);
               pq.enqueue(saveFlight);}}}}
while (!pq.isEmpty( ));}


