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Graph Vocabulary

• Linear lists and trees are two ways to make objects out of nodes and 
connections from one node to another.  There are many other ways to do it.

• A graph consists of a set of nodes called vertices (one of them is a vertex) 
and a set of edges that connect the nodes.  In an undirected graph, each 
edge connects two distinct vertices.  In a directed graph, each edge goes 
from one vertex to another vertex.  

• Two vertices are adjacent if there is an undirected edge from one to the other.

• A path (in either kind of graph) is a sequence of edges where each edge goes 
to the vertex that the next edge comes from.  A simple path is one that never 
reuses a vertex (DJW blur the distinction).  In a tree, there is exactly one 
simple path from any one vertex to any other vertex.

• A complete graph is one with every possible edge among its vertices.



Applications of Graphs

• Any situation where there are entities and binary connection relationships 
can be described with a graph.

• Transportation networks consist of points and connections from one point 
to another.  We often want to know whether these connections can be formed 
into paths, which is asking whether particular paths exist in the corresponding 
graph.  We also often attach weights to the edges, representing distance or 
cost.  A natural problem is then to find the shortest path from one vertex to 
another.

• We might use a vertex to represent every species of animal in some 
ecosystem, and place an edge between every pair of vertices representing 
species that compete for resources.  Paths in this graph would then represent 
more complicated relationships among the species.



Paths in Graphs

• We can give a recursive definition of paths in a graph.  There is a 0-step path 
from any vertex to itself.  If α is an i-step path from vertex x to vertex y, and e 
is an edge from y to some vertex z, then there is an (i+1)-step path β from x to 
z, given by appending the edge e to the path α.

• This suggests a recursive algorithm for exploring all paths out of some 
original vertex x -- explore the 0-edge path, then recursively explore all the 
paths out of all the neighbors (adjacent vertices) of x.

• This should strike you as familiar -- we’ve used this technique to mark all the 
squares on a continent in Projects 3 and 4.  A continent is a connected 
component of the graph where vertices are land squares and there are edges 
between the vertices for squares that are adjacent (not diagonally).  A 
connected component of an undirected graph is the set of all vertices that 
have a path to some particular vertex.



The Weighted Graph Interface

• Here’s an interface that represents a directed graph with integer edge 
weights.  The vertices are T objects, which we can add to the graph as we 
wish.  We add an edges by giving its from and to vertices and its weight.  We 
can mark vertices, get an unmarked vertex if one exists, and get a queue 
containing the vertices adjacent from any given vertex.  Note that vertices 
may be equal according to T’s equals method.

public interface WeightedGraphInterface<T> {
   boolean isEmpty( );
   boolean isFull( );
   void addVertex(T vertex);
   boolean hasVertex(T vertex);
   void addEdge(T fromVertex, T toVertex, int weight);
   int weightIs(T fromVertex, T toVertex);
   UnboundedQueueInterface<T> getToVertices(T vertex);
   void clearMarks( );
   void markVertex(T vertex);
   boolean isMarked(T vertex);
   T getUnmarked( );



Implementing Graphs With Arrays

• Here are the field declarations and constructors for an array-based 
implementation of our weighted graph interface.  Note the casting business.  
As usual, I’ve saved some code length over DJW by having the zero-
parameter constructor call the one-parameter constructor.

public class WeightedGraph<T> 
             implements WeightedGraphInterface<T> {
   public static final int NULL_EDGE = 0;
   public static final int DEFCAP = 50;
   private int numVertices, maxVertices;
   private T[ ] vertices;
   private int[ ][ ] edges;
   private boolean[ ] marks;
   public WeightedGraph(int maxV) {
      numVertices = 0; maxVertices = maxV;
      vertices = (T[ ]) new Object[maxV];
      marks = new boolean[maxV];
      edges = new int[maxV][maxV];}
   public WeightedGraph( ) {this(DEFCAP);} 



Some Methods of WeightedGraph
public void addVertex(T vertex) {
   vertices(numVertices) = vertex;
   for (int index = 0; index < numVertices; index++) {
      edges[numVertices][index] = NULL_EDGE;
      edges[index][numVertices] = NULL_EDGE;}
   numVertices++;}

private int indexIs(T vertex) {
   int index = 0;
   while (!vertex.equals(vertices[index])) index++;
   return index;}

public void addEdge(T fromVertex, T toVertex, int weight) {
   int row = indexIs(fromVertex), column = IndexIs(toVertex);
   edges[row][column] = weight;}

public int weightIs(T fromVertex, T toVertex) {
   int row = indexIs(fromVertex), column = IndexIs(toVertex);
   return edges[row][column];}



Building a Queue of Neighbors

• The other methods of WeightedGraphInterface are fairly simple to 
implement.  Here we look at the method that takes a vertex and gives back a 
queue containing its neighbors.  Remember that when we add a new vertex 
we set all the edge weights to and from it to NULL_EDGE.  We assume that 
this special value may not be the weight of an actual edge, so that we can 
cycle through all possible edges out of vertex and enqueue the vertices 
corresponding to real edges.

public UnboundedQueueInterface<T> getToVertices(T vertex) {
   UnboundedQueueInterface<T> adjVertices =
                                      new LinkedUndndQueue<T>( );
   int fromIndex = indexIs(vertex), toIndex;
   for (toIndex = 0; toIndex < numVertices; toIndex++)
      if (edges[fromIndex][toIndex] != NULL_EDGE)
         adjVertices.enqueue(vertices[toIndex]);
   return adjVertices;}



Implementing Graphs With Linked Lists

• The array-based implementation, called an adjacency matrix, is the simplest 
way to represent graphs on a computer.  But on a graph with n vertices, it 
always takes O(n2) memory locations, one for each entry in the edge array.

• Graphs in applications are usually sparse, meaning that they have relatively 
few neighbors for each vertex.  A sparse graph of n vertices might have only 
O(n) edges, and its matrix would be mostly null edges.  Another 
representation called an adjacency list saves space, and can save time if the 
algorithms are designed to use it efficiently.

• An adjacency list has an array of linked lists of vertices, one for each vertex.  
The list for vertex v has all of v’s neighbors, so there is only one entry for each 
edge of a directed graph, or two for each edge of an undirected graph.  We 
can implement the methods of the weighted graph interface fairly easily.  For 
example, the queue of neighbors just takes its entries from the list for the 
given vertex.


