
CMPSCI 187: Programming With Data Structures

Lecture #26: Binary Search Trees
David Mix Barrington
9 November 2012

Binary Search Trees

• Why Binary Search Trees?

• Trees, Binary Trees and Vocabulary

• The BST Rule

• Traversals

• The BSTInterface

• An Application Example

• Beginning the Implementation

Why Binary Search Trees?

• We’ve seen that binary search is a powerful technique to search sorted
arrays, finding an element in O(log n) time rather than O(n) for linear search.
But inserting or deleting into arrays is in general O(n) due to shifting elements.

• Linked structures are good for inserting and deleting quickly, once you have a
pointer to the place where it is happening, but they don’t allow the random
access to arbitrary elements that we need to do binary search.

• We could speed up our access to the middle elements of a linked list by
adding more pointers, say from the beginning of the list to the middle, or from
the middle to the three-quarters mark. Doing this right, we can add the
abilities we need to get to the element we want in O(log n) time.

• The best way to arrange this sort of thing turns out to be a tree structure.

Trees, Binary Trees, and Vocabulary

• We’ve seen trees in the directory structures of operating systems, in the
organization of a textbook or a company, and in Discussion #6 where we
wrote a recursive method to compare binary trees for equality.

• A binary tree is one where each node may have a left child or a right child
or both. There is one node called the root, and every node except for the
root is the child of another node. A leaf is a node with no children.

• We use genealogical language to describe trees: parent, ancestor,
descendant, sometimes even uncle or niece.

• We say that the root node of a tree is at level 0, its children are at level 1, its
grandchildren at level 2, and so forth. The highest level of any node in the
tree is the tree’s height.

The BST Rule

• A binary search tree is a binary tree with an element, from some class T that
has a compareTo method defined, at every node.

• The BST Rule is that for every node x, the element at x is greater than the
elements in x’s left child and all descendants of the left child, and is less than
the elements in x’s right child and all descendants of the right child. Thus x’s
element splits the smaller values in the left subtree from the greater values in
the right subtree.

• This allows us to find an arbitrary element by a form of binary search. We
look at the root. If it is our target we win, and if not we recurse to the root’s
left child (if the target is smaller than the root’s element) or to its right child (if
the target is greater). If the element is there we will find it this way, with a
number of tries bounded by the height of the tree. If it is not there, we will
find out when we recurse to a node that is null.

Traversals

• Just as we had prefix, infix, and postfix strings to represent formulas, we have
three ways to traverse the nodes of a binary tree in order: preorder, inorder,
and postorder. If our tree is the parse tree of a formula with binary operators
and values at the leaves, each order gives the order of the characters in the
corresponding string.

• Each traversal is defined recursively, so that we define how to visit each
node. Visiting a node means processing it in some way, and our recursive
definition of “traversing a node” x will give us a way to visit all the nodes in
the subtree under x (x and all its descendants).

• A preorder traversal of x first visits x, then traverses its left child, then
traverses its right child. An inorder traversal traverses the left child, visits the
node, and traverses the right child. A postorder traversal traverses the left
child, traverses the right child, and finally visits the node.

The BSTInterface

• The basic operations of a BST are exactly those of a list.

• The main difference (and the reason we don’t just extend) is that the reset and
getNext operations take a parameter. There are three different “current
positions”, one for each type of traversal.

public interface BSTInterface<T extends Comparable<T>> {
 static final int INORDER = 1, PREORDER = 2, POSTORDER = 3;
 boolean isEmpty();
 int size();
 boolean contains (T element);
 boolean remove (T element);
 T get (T element);
 void add (T element);
 int reset (int orderType);
 T getNext (int orderType);}

An Application Example
public class GolfApp2 {
 public static void main (String [] args) {
 Scanner conIn = new Scanner(System.in);
 String name; int score;
 BSTInterface<Golfer> golfers =
 new BinarySearchTree<Golfer>();
 Golfer golfer; int numGolfers; String skip;
 System.out.println(“Golfer name (press Enter to end): “);
 name = conIn.nextLine();
 while (!name.equals(“”)) {
 System.out.println(“Score: “); score = conIn.nextLine();
 skip = conIn.nextLine();
 golfer = new Golfer (name, score);
 golfers.add(golfer);
 System.out.println(“Name: “); name = conIn.nextLine();}
 System.out.println(“The final results are: “);
 numGolfers = golfers.reset(BinarySearchTree.INORDER);
 for (int i = 1; i <= numGolfers; i++) {
 System.out.println(golfers.getNext(BST.INORDER);}}}

Beginning the Implementation

• Like a list, a tree is a linked structure whose nodes are allocated dynamically.
We begin by defining a class for the nodes, which looks a lot like the classes
for singly or doubly linked lists.

• Note that any binary tree with elements at every node could use a similar type
of node -- this is a search tree node because T must be a class that supports
the compareTo method.

public class BSTNode<T extends Comparable<T>> {
 protected T info;
 protected BSTNode left;
 protected BSTNode right;
 public BSTNode (T info) {
 this.info = info; left = right = null;}
 // getters and setters
 }

The BinarySearchTree Class

• You would think that we would keep a “current position” for each of the three
types of traversals, but instead the reset operation will make a queue of all
the elements, in the correct order, and the getNext method will just dequeue
and return the next queue element.

public class BinarySearchTree<T extends Comparable<T>>
 implements BSTInterface<T> {
 protected BSTNode root;
 boolean found; // used by remove
 protected LinkUnbndQueue<T> inOrderQueue; // for traversal
 protected LinkUnbndQueue<T> preOrderQueue; // ditto
 protected LinkUnbndQueue<T> postOrderQueue; // ditto
 public BinarySearchTree() {
 root = null;}
 public boolean isEmpty() {
 return (root == null);}
 // more methods to come next lecture!

