
CMPSCI 187: Programming With Data Structures

Lecture #25: More Kinds of Lists
David Mix Barrington
5 November 2012

More Kinds of Lists

• Circular Linked Lists

• Doubly Linked Lists

• Operations for Doubly Linked Lists

• Linked Lists With Headers and Trailers

• A Linked List as an Array of Nodes

• A Specialized List for Bytes

• Case Study: Large Integers

Circular Linked Lists
• As we saw with queues, it’s easy to adapt a linked linear structure into a linked

circular structure. We merely have the last linear node in our list link to the first
node in the list, instead of to null.

• We also have the external pointer link to the last node in the list rather than the
first. (The first node is then list.getLink() instead of just list.) This
makes it easy to add nodes at either the beginning or the end of the list.
Removing is also straightforward with a special case for removing the only node.

• To iterate through the list, we begin with by setting currentPos to
list.getLink()and then iterate with currentPos =
currentPos.getLink() until we reach the last node, which we can detect
with currentPos == list.

• A circular list is much like having both head and tail pointers in a linear list, but
makes a few things easier.

Doubly Linked Lists

• We’ve seen a few places where the asymmetry between the forward and
backward directions in a singly list poses a problem. We can’t easily remove
a node from the tail of the list, for example. If we ever wanted to traverse a
singly linked list backward, we’d be in big trouble.

• A natural way to remove the asymmetry is to give each node two pointers,
one forward and one backward. It solves the problems above, at the cost of
(1) doubling the amount of memory devoted to links and (2) roughly doubling
the number of pointers that have to be changed in adding or removing a
node.

public class DLLNode<T> extends LLNode<T> {
 private DLLNode<T> back;
 public DLLNode (T info) {super(info); back = null;}
 public void setBack (DLLNode<T> back) {this.back = back;}
 public DLLNode<T> getBack() {return back;}}

Operations on Doubly Linked Lists

• These methods assume that the instance variable location has already
been set to the node before which we want to add, or to the node that we
want to remove. This code won’t add after the last position, and we would
have to deal with several special cases in the remove method.

public void add (T element) {
 DLLNode<T> newNode = new DLLNode<T> (element);
 if (isEmpty()) {list = newNode; return;}
 newNode.setBack(location.getBack());
 newNode.setLink(location);
 location.getBack().setLink(newNode);
 location.setBack(newNode);}

public T remove () {
 // special cases for first or last node
 location.getBack().setLink(location.getLink());
 location.getLink().setBack(location.getBack());}

Linked Lists With Headers and Trailers

• We’ve already seen the notion of a sentinel in a linked list -- a node with null
contents at the last position, so that if currentPos is any node with content,
it is still safe to call methods of the node currentPos.getLink(). Our
test for the end of the list changes from (currentPos.getLink() ==
null) to (currentPos.getLink().getInfo() == null).

• We can use a similar idea to avoid the problems we’ve just seen with the
beginning and end of a doubly-linked list. We put dummy nodes at both the
head and tail of the list, so that an “empty list” has two nodes.

• In a sorted list, we can give the header node a value that will be “less than”
any legitimate value, and the trailer node a value that will be “greater than”
any legitimate value. This minimum and maximum values would depend on
the class, and the new list class would expect them to be declared as
constants.

A Linked List as an Array of Nodes

• We’ve mentioned one drawback of linked structures -- when we allocate new
nodes by asking the operating system to give us memory for them one by
one, we may wind up with nodes that are in a slower area of memory, or
nodes that are not near each other in memory, so that they won’t all be kept
in a faster cache at one time.

• A trick to avoid this, very common in systems software, is to hold the linked
list entirely within a single array of nodes. Each node has an info
component like that of an LLNode, but its “link” is an int giving an index into
the array. The array’s memory will be allocated all at once and thus be
contiguous and more likely to be cached together.

• We can set the initial state of the array to have a “free list” of nodes linked
together. To put a new node onto our list, we take the first node of the free
list and update the free list accordingly. We can keep as many lists in the
array as will fit in the available memory.

A Specialized List for Bytes

• Once we understand the basic principles of linked lists, we can design a
specialized list class for any particular purpose not well served by our existing
list types. In Section 7.5, DJW design a list type to support the large integer
case study of Section 7.6 -- they need a list of bytes (8-bit integers) such that
they can iterate forward or backward, and add elements at either the front or
rear of the list.

• It’s quite straightforward to implement this interface with a doubly linked list.
Each node is not a DLLNode<Byte> but an SListNode, from a class defined
within the SpecializedList class.

public interface SpecializedListInterface {
 void resetForward();
 byte getNextElement();
 void resetBackward();
 byte getPriorElement();
 int size(); // number of bytes in the list
 void addFront (byte element);
 void addEnd (byte element);}

Case Study: Large Integers

• Integers are usually represented in Java by int or long primitive values, but
even long values are limited to about plus or minus 1019. In some
circumstances, however, we may want to work with much larger numbers.
For example, the RSA public-key cryptosystem can be broken by factoring
a publicly available integer, so it can only be secure if that integer is so large
that known factoring methods don’t have time to work. This makes factoring
algorithms that work on 100-digit or 200-digit integers somewhat important.

• We won’t look at many details of DJW’s LargeInt class in this course, but
the basic idea is that any number can be represented as a sequence of digits,
and a single digit can be stored in a byte. (We could even store pairs of
digits in one byte per pair, but DJW want simpler code.) Then we can add or
multiply these sequences by carrying out operations on the individual digits,
just as we would on paper. We also need methods to convert int or long
values into LargeInt values, and a toString method as well.

