
CMPSCI 187: Programming With Data Structures

Lecture #22: Indexed Lists and Binary Search
David Mix Barrington
29 October 2012

Indexed Lists and Binary Search

• Review of List Interfaces

• The ArrayIndexedList Class

• Applications of Lists

• The Binary Search Algorithm

• Recursive Binary Search

• Analysis of Binary Search

• Linear vs. Binary Search

Review of List Interfaces

• We’ve seen that DJW have two interfaces for the three kinds of lists:
ListInterface for the unsorted and sorted lists, and IndexedListInterface
for indexed lists. ListInterface has the methods size, add, contains,
remove, get, toString, reset, and getNext. The last two allow iteration
through the list -- in the java.util List interface this is done by creating an
Iterator object associated with the list.

• IndexedListInterface has variants of add, remove, and get that each take an index
as an argument -- add and remove change the indices of elements after the target.
It also has two new methods set, to return and change the value at a given index,
and indexOf, to find the first occurrence of a particular value.

• We saw array implementations of unsorted and sorted lists. The former had O(1)
running time for add and remove, but the latter took O(n) for these. Both were O(1)
for size and the iterator methods, and O(n) for the others because of the searches
involved. We’ll look at faster searching of a sorted list today.

The ArrayIndexedList Class

• The code for this class is not unlike that for the Kennel class on the first
midterm, except that we insist that the used slots are consolidated:

public class ArrayIndexedList<T> extends ArrayUnsortedList<T>
 implements IndexedListInterface<T> {
 // constructors with super
 public void add(int index, T element) {
 if ((index < 0) || (index > size()) //throw IOOBException
 if (numElements == list.length) enlarge();
 for (int i = numElements; i > index; i--)
 list[i] = list [i - 1];
 list[index] = element;
 numElements++;}

 public T set (int index, T element) {
 // if index is bad throw exception
 T hold = list[index];
 list[index] = element;
 return hold;}

The Rest of ArrayIndexedList
• For some reason DJW repeat toString rather than inheriting it. These

methods are implemented much like those of ArraySortedList.

public T get (int index) {
 // if index is bad throw exception
 return list[index];}

public int indexOf (T element) {
 find(element);
 if (found) return location;
 else return -1;}

public T remove (int index) {
 // if index is bad throw exception
 T hold = list[index];
 for (int i = index; i < (numElements - 1); i++)
 list[i] = list[i + 1];
 list[numElements - 1] = null;
 numElements--;
 return hold;}

Applications of Lists

• DJW give three sample applications of their lists, one each for unsorted,
sorted, and indexed lists.

• They use the RankCardDeck class from Chapter 5 to simulate dealing out
lots of seven-card hands for stud poker, empirically deriving the probability
that a random hand will contain a pair. (They also compute the probability
mathematically, which is a CMPSCI 240 problem.) They keep the hands as
unsorted lists.

• They use sorted lists to store the scores of golfers -- each golfer/score pair is
added to the list, and at the end the list can be reported in order of score.

• They use indexed lists to assemble playlists of songs and compute their total
length. The user can enter new songs with durations and get a list of the
songs with the duration of each and the total time for the playlist.

The Binary Search Algorithm

• The idea of binary search in a sorted list is simple -- we have a target range,
and look at its middle element. If it is too big or too small we refine the range,
and if it is just right we report victory.

• Like the other find method, we use the instance variables found and
location, setting the latter to the first answer we find (which may not be the
first occurrence of the target). If the search fails we leave found as false.

protected void find (T target) {
 int first = 0, last = numElements - 1, compareResult;
 Comparable targetElement = (Comparable) target;
 found = false; // recall this is an i.v.
 while (first <= last) {
 location = (first + last) / 2; // rounds down
 compareResult = targetElement.compareTo(list[location]);
 if (compareResult == 0) {found = true; break;}
 else if (compareResult < 0) last = location - 1;
 else first = location + 1;}}

Recursive Binary Search

• This approach is easily made recursive with the use of a helper method that
has the appropriate signature for its job “find the target if it is between this
location and that”. We can see that this method has a base case, makes
progress toward that base case, and works if the recursive calls work.

protected void recFind (Comparable target, int fromLocation,
 int toLocation) {
 if (fromLocation > toLocation) {found = false; return;}
 location = (fromLocation + toLocation) / 2;
 int compareResult = target.compareTo (list[location]);
 if (compareResult == 0) found = true;
 else if (compareResult < 0)
 recFind (target, fromLocation, location - 1);
 else recFind (target, location + 1, toLocation);}

protected void find (T target) {
 Comparable targetElement = (Comparable) target;
 found = false;
 recFind (targetElement, 0, numElements - 1);}

Analysis of Binary Search

• A round of binary search (whether recursive or not) either succeeds in finding
the target or cuts the range to be searched in half. To search a range of N
elements, therefore, costs about log n rounds in the worst case. (Remember
that in computer science, logs are normally base-2 and often thought of as
integers -- “log x” is the smallest integer k such that x <= 2k.) Each round
takes at most an amount of time independent of N, so our running time is O(1)
times log n or O(log n).

• The log of 1000 as defined above is 10, since 210 = 1024 >= 1000. The log of
1,000,000 is 20, therefore, and the log of 1015 is about 50. Modern computer
operations are measured in nanoseconds, and 1015 nanoseconds is about
two weeks. So even if N is a huge but realistic number, log N is a small one.

• Linear search, by contrast (the original find method, for example), takes O(N)
time on a list of size N in the worst case.

Linear vs. Binary Search

• We’ve seen that the time for binary search is O(log n) -- it grows
proportionally to the logarithm of n rather than to n itself. The larger the list,
then, the greater the advantage of binary over linear search.

• The big-O hides a larger constant, though, because a step of binary search
takes longer than a single comparison. For smaller lists (DJW suggest size
less than 20), the simpler linear search may be faster.

• Binary search also only works on sorted lists. If our data does not come to us
in sorted form, we have to spend the extra time to sort it. (We will look at
sorting algorithms later in the course. We also need random access to the
list to implement binary search. If is list is so long that it must be stored in a
file, we don’t have random access but only sequential access. The same is
true if we may only traverse the list with an iterator.

