
CMPSCI 187: Programming With Data Structures

Lecture #21: Array-Based Lists
David Mix Barrington
26 October 2012

Array-Based Lists

• Comparing Objects: equals and Comparable

• Lists: Unsorted, Sorted, and Indexed

• Assumptions About Lists

• The List Interfaces

• Iterators

• The ArrayUnsortedList Class

• The ArraySortedList Class

Comparing Objects: equals and Comparable

• We now begin our study of lists, one of the most general types of collections.
Our basic operations for lists will include testing whether a given element is
already in a list (the contains method). Some of our lists will be sorted,
which means that we have defined what it means for one element to be “less
than” another. This raises questions -- what does it mean for two objects to
be equal, or for one to be less than another?

• If x and y are two objects in Java, we know that x == y is true if and only if
x and y are two names for the same object. By contrast, it’s possible for two
different primitives to have the same value, and == tells us about this.

• “Having the same value” is a concept that depends on the type of the
objects. We thus define an equals method for any class where we need to
make such judgements. Since equals is defined as a method in the Object
class and every other class extends Object, we can always use equals. If it
has not been redefined for that class, it gives the same result as ==.

The Comparable Interface

• A total order on a class is a definition of when one object in the class is “less
than or equal to” another. Once we have defined both this concept and that
of equality, definitions of “greater than”, “greater than or equal to”, and “less
than” follow directly. (Total orders must follow some rules that you’ll see in
CMPSCI 250, such as transitivity and trichotomy.)

• We’d like to write programs that deal with any class that has a total order, but
arbitrary objects are not guaranteed to have one. The Comparable<T>
interface requires that a class have a method public int compareTo (T
other). This returns a negative number if the calling object is less than
other, returns 0 if they are equal, and returns a positive number if the calling
object is greater. The generic definition allows objects to be compared only
to other objects in the same class.

• We could imagine different ways to order elements of the same class -- you’ll
see this in Project #4. A class can have only one compareTo method, but it’s
possible to define different comparator objects for the same class.

Lists: Unsorted, Sorted, and Indexed

• A list is a linear data structure, where each element except the last has a
successor and each element except the last has a predecessor. Every list
also has a size, the number of elements in it.

• A list is sorted if the successor and predecessor properties are consistent with
the compareTo method of the elements -- each element is “less than or equal
to” its successor according to that method. A list without this property is
unsorted -- it still has an order given by the successor and predecessor
properties, but that order has no meaning in terms of the elements themselves.

• A list can also be indexed, meaning that we can access elements directly by
their position in the list, or index. In an indexed list, we would have methods to
“return the fourth element” in the order given by successor and predecessor.

Assumptions About Lists
• DJW list a number of assumptions about their lists to simplify the treatment:

• They are unbounded -- if implemented with arrays, the arrays resize.

• Duplicate elements (where one equals the other) are allowed. Finding one
equal element is as good as finding any other.

• A null element cannot be a member of a list.

• Operations generally report success or failure by returning a boolean, not by
throwing an exception on failure (except for a bad index in an indexed list).

• Sorted lists are in increasing (more precisely, non-decreasing) order. Indexed
lists have indices ranging from 0 to the size - 1, with no gaps.

• The equals and compareTo methods are consistent with each other.

The List Interfaces

• While sorted and unsorted lists differ in many respects, the names of their
operations are the same and thus the same interface may be used for both.

• We often want to iterate through a list, processing each element in turn. If
we reset the list and then call getNext a number of times equal to size, we
are guaranteed to see all the elements. A precondition for getNext is that no
add or remove operations have occurred since the last reset.

public interface ListInterface<T> {
 int size();
 void add (T element);
 boolean contains (T element);
 boolean remove (T element); // return value for success
 T get (T element); // null if element not there
 String toString();
 void reset(); // sets current position to beginning
 T getNext(); // advances current position, wrapping around
}

The Indexed List Interface

• In an indexed list, we have additional commands to add, read, or remove
elements at particular positions in the list. We throw an exception if the index
in our parameter is outside the range currently filled with elements.

• The add and remove methods insert or delete an element at a particular
position and change the index of all higher-numbered elements to reflect that
change (to make room for the new element or to fill in the gap).

public interface IndexedListInterface<T>
 extends ListInterface<T> {
 void add (int index, T element); // higher elements move up
 T set (int index, T element); // returns former value
 T get (int index); // exception for bad index
 int IndexOf (T element); // index of first one, -1 if none
 T remove (int index); // higher elements move down into gap
}

Iterators

• The Java Collections classes for lists are generally similar to those in DJW
with one prominent exception. Java provides the ability to traverse lists with
an iterator object. An iterator is an object attached to a collection that has
methods that refer to the collection. Lists implement the Iterable interface,
which requires a method iterator that creates an Iterator object.

• When an iterator object for a list is created, its “current position” is at the
beginning of the list. The next method returns the next element of the list
and advances the current position -- the remove method does the same but
also takes the returned element out of the list. This can continue until the end
of the list, which can be detected with the hasNext method. (And you need
hasNext to guard against an exception from calling next when at the end.)
Rather than reset an iterator, you create a new one.

• While list iterators usually give their elements in the list order, there is no
guarantee of this for iterators -- they are required only to return each element
in the list the exact number of times it occurs in the list.

The ArrayUnsortedList Class

• As usual, our data structure has an array of T’s with constructors to create it
and a method to increase its size as needed.

public class ArrayUnsortedList<T>
 implements UnsortedListInterface<T> {
 protected final int DEFCAP = 100;
 protected int origCap;
 protected T[] list;
 protected int numElements = 0, currentPos, location;
 protected boolean found; // set by find method
 public ArraySortedList(int origCap) {
 list = (T[]) new Object[origCap];} // ignore warning
 public ArraySortedList() {
 this(DEFCAP); origCap = DEFCAP;}
 protected void enlarge()
 T[] larger = (T[]) new Object[list.length + origCap];
 for (int i = 0; i < numElements; i++)
 larger[i] = list[i];
 list = larger;}

Methods of ArrayUnsortedList

• Here find is an auxiliary method used by remove, contains, and get.

protected void find (T target) {
 location = 0;
 while (location < numElements) {
 if (list[location].equals(target)) {
 found = true; return;}
 else location++;}}

public void add (T element) {
 if (numElements == list.length) enlarge();
 list[numElements] = element;
 numElements++;}

public boolean remove (T element) {
 find (element);
 if (found) {list[location] = list numElements - 1;}
 list[numElements - 1] = null;
 numElements--;}
 return found;}

More Methods of ArrayUnsortedList
public int size () {return numElements;}

public boolean contains (T element) {
 find (element); return found;}

public T get (T element) {
 find (element);
 if (found) return list[location];
 else return null;}

public String toString() {
 String listString = “List:\n”;
 for (int i = 0; i < numElements; i++)
 listString += “ “ + list[i] + “\n”;
 return listString;}

public void reset() {currentPos = 0;}

public T getNext() {
 T next = list[currentPos];
 if (currentPos == numElements - 1) currentPos = 0;
 else currentPos++;
 return next;}

The ArraySortedList Class
• The add method has a bunch of casts because the compiler doesn’t know

that the type T had better implement Comparable<T>.

public class ArraySortedList<T> extends ArrayUnsortedList<T>
 implements ListInterface<T> {
 //no new fields, constructors are just “super”

 public void add (T element) {
 T listElement;
 int location = 0; // local variable, same name as i.v.
 if (numElements == list.length) enlarge();
 while (location < numElements) {
 listElement = (T) list[location];
 if (((Comparable) listElement).compareTo(element) < 0)
 location++;
 else break;}
 for (int index = numElements; index > location; index--)
 list[index] = list[index - 1];
 list[location] = element;
 numElements++;}

The Rest of ArraySortedList

• The find, contains, get, toString, reset, and getNext methods are
all inherited from ArrayUnsortedList. Except for toString, they each
run in O(1) time.

• The add and remove methods run in O(N) time on a list with N elements in the
worst case, because of elements being moved to make room or fill a gap.

public boolean remove (T element) {
 find (element);
 if (found) {
 for (int i = location; i <= numElements - 1; i++)
 list[i] = list[i + 1];
 list[numElements - 1] = null;
 numElements--;}
 return found;}}

