
CMPSCI 187:Programming With Data Structures

Lecture #19: Linked Queues
David Mix Barrington
22 October 2012

Linked Queues

• Review: Array-Based (Circular) Queues

• The Game of War

• The War Simulation

• A Link-Based Queue Implementation

• The enqueue Operation

• The dequeue Operation

• A Circular Linked Queue Design

Review: Array-Based (Circular) Queues

• A queue is a linear data structure that is first-in-first-out. Objects may be
added at the rear of the queue by the enqueue operation, or removed from
the front of the queue by the dequeue operation. DJW’s QueueInterface
interface has the dequeue and isEmpty methods -- they have two
extensions of this interface with the enqueue method (one,
BoundedQueueInterface, also has an isFull method).

• We saw last week how to implement a queue with an array. Both the front
and rear of the queue change their position in the array as items enter and
leave the queue. We think of the array as circular, in that the position coming
after size - 1 is position 0. In general, the position after position i is
position (i+1) % size. The variable rear is the index before the place to
put the next enqueued item (initially -1), and the variable front is the index
of the next item to be dequeued. We also keep a variable numElements, not
least to be able to distinguish a full array from an empty one.

The Card Game of War

• War is a two-player card game that calls for no decision-making by either
player. You shuffle the deck and play deterministically until the game ends.
Each player has a “hand”, originally half the deck.

• A basic play is for each player to turn up the first card in their hand. The
player with the higher rank card wins both cards and puts them at the end of
their hand. If the two cards have the same rank, each player deals out three
cards face-down from their hand and turns up the next card in their hand.
The player with the higher-ranked of these wins all ten cards now on the
table. If those two cards have equal rank, each player plays four more cards
for a second “war”, and so on until there is a resolution or one player runs out
of cards.

• We’ll simulate this game on random decks to determine how long it usually
takes to finish. It will be easy to treat the hands as queues.

The RankCardDeck Class

• Each card has a rank from 0 to 12. The shuffle chooses cards independently.

public class RankCardDeck {
 private static final numCards = 52;
 protected int[] carddeck = new int[numCards];
 protected int curCardPos = 0;
 protected Random rand = new Random();
 public RandCardDeck () {
 for (int i = 0; i , numCards; i++) carddeck[i] = i/4;
 public void shuffle() {
 int randLoc, temp;
 for (int i = (numCards - 1); i > 0; i--) {
 randLoc = rand.nextInt(i); // 0 <= randLoc < i
 temp = carddeck[randLoc];
 carddeck[randLoc] = carddeck[i];
 carddeck[i] = temp;}
 curCardPos = 0;}
 public boolean hasMoreCards() {return curCardPos != numCards;}
 public int nextCard() {
 curCardPos++; return (carddeck[curCardPos - 1]);}}

The War Simulation

• The WarGame class sets up two queues of Integers for the players’ hands,
and a third queue for the cards that will be one in the current battle, if any. A
variable, set by the user, limits the number of battles that may happen before
the game is abandoned.

• The play method in WarGame deals the cards into the two player’s hands
and then runs battles until the game ends. The battle method puts the
players’ next cards into the prize queue, then checks the ranks of those two
cards. If they are different, it puts the cards in the prize queue into the
winner’s hand. If they are the same, it puts three cards from each player into
the prize queue, then recursively calls itself. Note that DJW’s code is
intended to analyze the average number of battles in a game -- it does not
report the winner.

• If a player runs out of cards, a QueueUnderflowException is thrown and
caught by the play method, which declares the game over and keeps going.

A Link-Based Queue Implementation

• Implementing a queue with a linked list is very natural. We will keep the front
of the queue at the head of the list, where we can dequeue easily by cutting
out the head node and returning its contents. We need to enqueue elements
at the rear of the list, and we can save time by maintaining a pointer to the
last element of the list.

• Could we have done this the other way round? That would have meant
removing an element from the end of the list, which is problematic for a
singly-linked list because we must reset the rear pointer to the penultimate
node.

public class LinkedUnbndQueue<T>
 implements UnboundedQueueInterface<T> {
 protected LLNode<T> front, rear;
 public LinkedUnbndQueue () {
 front = rear = null;}

The enqueue Operation

• To enqueue an element, we must make a new node and splice it into the list
at the rear. Normally this will just mean making the old rear node point to the
new one, and updating the rear pointer. We have a special case if the queue
is currently empty, and our new node will be the only element of the queue.

• In that case the new node will become both the front and rear element. We
can bring the statement rear = newNode out of the if-else block,
however, since we want it to be executed in either case.

public void enqueue (T element) {
 LLNode<T> newNode = new LLNode<T>(element);
 if (rear == null)
 front = newNode;
 else
 rear.setLink (newNode);
 rear = newNode;}

The dequeue Operation

• To dequeue, we remember the contents of the front node, cut it out of the list,
and return the contents. Of course if the list is empty we must throw an
exception.

• The one complication occurs if the node we are removing is the only one in
the queue. We detect this situation as front == null, and rectify it by
setting rear to null as well. If we didn’t do this, the rear pointer would still
point to the abandoned former node.
public T dequeue () {
 if (isEmpty())
 throw new QueueUnderflowException (“Dequeue from empty”);
 else {
 T element = front.getInfo();
 front = front.getLink();
 if (front == null)
 rear = null;
 return element;}}

A Circular Linked Queue Design

• Since a linked list is assembled from nodes with one pointer each, there is no
reason it could not be circular instead of linear.

• We can keep just one pointer into the circular list, for the rear element of the
queue. Instead of having a null link, the rear node can point to the front node.
That way the front node can be referenced as rear.getLink(), and we
can dequeue the front element with the statement
rear.setLink(rear.getLink().getLink()), of course after
remembering its contents.

• The important special case is when there is exactly one node in the circular
list, so that we must set rear to null if we dequeue. We can recognize this
situation because the read node then links to itself, as it is also the front node.
Of course we also need special code to enqueue onto an empty queue.

Comparing the Implementations

• We’ve been careful in both implementations to make the enqueue and
dequeue operations each O(1) time (not “always the same time”, as many of
you said on the test, but “at most a constant”). The constructor for a linked
queue is also O(1), but the constructor for an array with initial size N takes
O(n).

• An exception is the unbounded array implementation, which might take O(N)
time with N items in the queue if it has to resize the array. As we’ve noted, if
we double the array size each time we change it, the total time to resize the
array up to size N turns out to be O(N), or an amortized O(1) per enqueue.

• The linked structure uses an extra pointer in each node, doubling the space
needed for the pointer to the element object. The array implementation uses
the space for the unused entries in the array. Thus if the array is always at
least half full, the array implementation uses less space, but both use only
O(N) for a queue whose maximum size over time is N elements.

