
CMPSCI 187: Programming With Data Structures

Lecture #16: Thinking About Recursion
David Mix Barrington
12 October 2012

Thinking About Recursion

• Review of the Grid Class

• Recursion on Linked Structures

• Printing a Linked List Backwards

• Recursion at the Machine Level

• Removing Recursion

• Whether to Use Recursion

• Very Bad Recursive Algorithms

Review of the Grid Class

• DJW present a class called Grid in Section 4.4, which we will adapt in
Project #3. A Grid object has a two-dimensional array of booleans, called
grid. I, not DJW, call a pair (i, j) with grid[i][j] true a “land square”, and
one with grid[i][j] false a “water square”. They have a constructor to set
the grid values randomly, with the average percentage of land squares as a
parameter.

• A “continent” (or “blob” for DJW) is a set of squares such that from one of
them, you can get to any of the others by an NESW path on land squares, but
you cannot get to any land square off the continent. DJW present a method
markBlob that marks all the squares on a continent, and a method
countBlobs to determine how many continents are in a given grid.

• The markBlob method operates recursively -- it can be summarized as
“mark the target square, then call markBlob on any unseen land neighbors it
has”. This implicitly manages the search with a stack.

Recursion on Linked Structures

• We can define a linked list recursively once we have the definition of the
LLNode<T> class. A linked list of T objects is either empty (when its head
pointer is null) or consists of an LLNode whose info field contains a T
object and whose link field is the head of a linked list.

• If we can define what we want to do recursively, we can easily write recursive
code. To add an element to the tail of the list, we make a new node and
attach either at the beginning (if the list is now empty) or to the tail of the list
at head.link. We can check our three questions -- there is a base case, we
will get to it, and our result is correct if the recursive call is correct.

public void addToTail (LLNode<T> here, T elem) {
// add node containing elem to tail of list starting at here
 LLNode newNode = new LLNode<T> (elem);
 if (head == null) head = newNode;
 else addToTail (head.getLink());}

Printing a Linked List Backwards

• DJW’s example of a recursive procedure on a linked list is one that prints out
the contents of each node to System.out, but in reverse order, with the tail
element first and the head element last.

• The idea is simple given the recursive definition. If the list is empty we have
nothing to do. If it is not, we first print the list starting with head.link, then
print out the contents of the head node. Their example fits within their
LinkedStack class. As is common in such cases, they use a helper method.
The general method takes any node pointer as argument, then the specific
method calls the general one on the head pointer of the list. Note this is O(n2).

 public void revPrint (LLNode<T> listRef) {
 if (listRef != null) {
 revPrint (listRef.getLink());
 System.out.println (“ “ + listRef.getInfo());}}

public void revPrint () {
 revPrint (top);}

Recursion at the Machine Level

• I’ve mentioned before how method calls are handled at the machine level.
When method A calls method B, the execution of A is suspended while B
runs, and the machine stores an activation record that will allow it to restore
A’s context when B finishes. If B then calls C, the activation record for B goes
on top of A’s on the call stack.

• It’s no different when a method calls itself, directly or indirectly. We get
multiple activation records on the call stack for the same method. Note that
each of these is independent, with, for example, separate copies of each local
variable. Running our factorial(n) eventually gets a stack of n records.

• Our Project #2 operated recursively in a sense, and the explicit stack could
have been replaced by recursive calls to a method that carried out the search
starting with a particular Move. The markBlob method, contrariwise, could
also have been implemented non-recursively with an explicit stack.

Removing Recursion

• Many of the recursions we have seen so far are examples of tail recursion.
They make one call to themselves in the general case, and it occurs at the
end of the code. Thus the recursive calls are first all made, and then each
returns a a value to the method that called it.

• We can replace this sequence by a non-recursive loop. In the factorial case,
we have a value retValue which we set to 1 at the beginning, so that we will
correctly return 1 if n is 0 and there is no recursion. We then change
retValue to reflect the action of each version of the method, also keeping
the value of n so that we will know when we reach the base case. (Note that
DJW’s example has reversed the order of the multiplications of the recursive
version, which does not matter because multiplication is commutative.)

private static int factorial (int n) {
 int retValue = 1;
 while (n > 0) {
 retValue *= n; n--;}
 return retValue;}

Stacking to Remove Non-Tail Recursion

• In the recursive revPrint method we saw earlier, each run of the method had
at most one recursive call to revPrint, but we did not have a tail recursion
because there was code to run after the recursive call.

• To simulate this without recursion, we note that the print statement will
execute on the elements successively, operating on what would then be the
top element of the calling list. We need to record, on the way down the list,
the information that this last statement will need. An explicit stack does this.

public void prentReversed () {
 USI<T> stack = new LinkedStack<T>();
 LLNode<T> listNode = top;
 while (listNode != null) {
 stack.push (listNode.getInfo());
 listNode = listNode.getLink();}
 while (!stack.isEmpty()) {
 System.out.println (“ “ + stack.top());
 stack.pop();}}

Whether to Use Recursion

• Using recursion incurs costs, as do the techniques we could use to replace
the recursion. Whether to use recursion for a given problem depends on the
tradeoffs between these costs.

• A recursive method uses space on the call stack, which may be a limited
resource. It uses some additional time to create and dispose of activation
records, and these actions may use slower memory than is needed by the
iterative version.

• The iterative version, on the other hand, may require more lines of code for
the same job, and may be harder to debug because the algorithm is further
removed from the definition of the problem. (Our Three Questions are
enormously powerful for verifying completion and correctness.) We’ll also see
on the next slide that recursive versions can sometimes be far slower. The
ideal situation would be to write and debug a recursive version and have it
automatically converted to an iterative version by a compiler.

Very Bad Recursive Algorithms

• I can define the function f(x) = 2x recursively, by the rules f(0) = 1 and f(x) =
f(x-1) + f(x-1). If I use this definition to write a recursive algorithm, it will
make 2x different calls to f(0) and add their results.

• DJW’s example (foreshadowing CMPSCI 240) is to count the number of
subsets of a group with a certain number of members. The recursive
algorithm below is correct, but horribly slow, again because it reaches its
result by adding 1’s. You’ll eventually see better ways to calculate this.

public static int twoToThe (int n) {
 if (n == 0) return 1;
 else return twoToThe (n-1) + twoToThe (n-1);}

public static int combinations (int group, int members) {
 if (members == 1) return group;
 else if (members == group) return 1;
 else return (combinations (group - 1, members - 1) +
 combinations (group - 1, members));}

