
NAME:

CMPSCI 187
Programming With Data Structures

Second Midterm Exam Fall 2012

D. A. M. Barrington 7 November 2012

DIRECTIONS:

• Answer the problems on the exam pages.

• There are seven questions on pages 3-11, most with mul-
tiple parts, for 100 total points. Probable scale is some-
where around A=93, C=69, but will be determined af-
ter I grade the exam.

• If you need extra space use the back of a page or the
overflow page 12. The code handout on page 13 may
be separated from the exam and need not be handed
in.

• No books, notes, calculators, or collaboration.

1

1 /10
2 /15
3 /15
4 /15
5 /15
6 /10
7 /20

Total /100

2

Question 1 – Java Concepts (10): Briefly explain the difference between the two concepts in
each pair (2 points each): indicated:

• (a) recursive and iterative methods to compute the factorial of an integer

• (b) the class LLNode<T> and the class DLLNode<T>

• (c) serializable and unserializable classes

• (d) synchronized and unsynchronized methods

• (e) sorted and unsorted lists

3

Question 2 – Software Engineering (15): Briefly discuss (in English) how you would make
the following modifications to the code for the specified program, with specific reference to
the code (5 points each):

• (a) In Project #4, we initially determined the continent of each land square by adapting
DJW’s markBlobs method, which was recursive and thus implicitly used a stack. Could
we have done this job instead with a non-recursive method using queues? Explain how
we could or why we could not.

• (b) In Project #4 you used a queue to determine the centrality of a land square X in a
MapGrid object, which was the distance from X to the farthest square on X’s continent.
How could you use a similar queue-based method to determine the number of squares
on X’s continent?

• (c) In the case study of Chapter 5, DJW use queues to simulate the physical queues
of customers waiting for service. Suppose we want to change that simulation so that
every ten seconds while waiting in the queue, a customer abandons the queue with a
1% probability. How could we implement this change while still using queue objects to
simulate each queue?

4

Question 3 – Tracing Code (15): Determine the output value of the following blocks of code.
In each case, assume that the Dog class from the page 13 handout is present. Include a brief
justification of your answer.

• (a)

// give the return value of recurse (3, 3)
public int recurse (int j, int k) {

if ((j == 0) && (k == 0))
return 7;

if (j == 0) return (1 + recurse (0, k - 1));
return recurse (j - 1, k + 1);}

• (b)

Dog cardie = new Dog("Cardie", 5);
Dog duncan = new Dog("Duncan", 3);
LLNode<Dog> list = new LLNode<Dog>(null);
LLNode<Dog> cNode = new LLNode<Dog>(cardie);
LLNode<Dog> dNode = new LLNode<Dog>(duncan);
list.setLink(cNode);
cNode.setLink(dNode);
dNode.setLink(list);
list.setLink(list.getLink().getLink());
cNode.setLink(dNode.getLink());
dNode.setLink(dNode.getLink().getLink());
LLNode<Dog> cur = cNode;
for (int i = 0; i < 4; i++)

cur = cur.getLink();
System.out.println (cur.getInfo().getName());

5

• (c)

QueueInterface<String> q = new ArrayQueue<String> ();
QueueInterface<String> r = new ArrayQueue<String> ();
q.enqueue ("Cardie");
r.enqueue ("Duncan");
q.enqueue ("Biscuit");
r.enqueue ("Ace");
for (int i = 0; i < 3; i++) {

String first = q.dequeue();
String second = r.dequeue();
if (first.compareTo(second) < 0) {

q.enqueue (first);
r.enqueue (second);}

else {
r.enqueue (first);
q.enqueue (second);}}

while (!q.isEmpty())
System.out.println (q.dequeue());

Question 4 – Finding Errors (15): Each of the following code fragments has a specific error
that either prevents it from compiling, will cause an exception if it is run, or will cause it to
produce a clearly unintended output. Find the error and explain what will happen (5 points
each):

• (a)

public class DogPound {
public DogPound () {

ListInterface<Dog> list = new ArrayUnsortedList<Dog> ();}
public static void main (String [] args) {

Dog cardie = new Dog("Cardie", 5);
list.add (cardie);
System.out.println (list);}}

6

• (b)

public int multiply (int j, int k) {
// precondition: j and k are positive or 0
// postcondition: return value is j * k

if (k == 0)
return 0;

if (j == 1)
return k;

return (k + multiply (j - 1, k);}

• (c)

Dog cardie = new Dog("Cardie", 5);
Dog duncan = new Dog("Duncan", 3);
LLNode<Dog> list = new LLNode<Dog>(null);
LLNode<Dog> cNode = new LLNode<Dog>(cardie);
LLNode<Dog> dNode = new LLNode<Dog>(duncan);
cNode.setLink(list);
dNode.setLink(cNode);
list = dNode;
LLNode cur = list;
while (cur.getInfo() != null) {

int totalAge += cur.getInfo().getAge();
cur = cur.getLink();}

System.out.println (totalAge);

7

Question 5 – Timing Analysis (15): Find the worst-case asymptotic running time of each block
of code, as a function of the input size N (5 points each):

• (a)

BoundedQueueInterface<String> q = new ArrayQueue<String> (3*N);
BoundedQueueInterface<String> r = new ArrayQueue<String> (3*N);
for (int i = 0; i < N;, i++)

q.enqueue("Cardie");
boolean flag = false;
while (!q.isEmpty()) {

if (flag)
r.enqueue (q.dequeue());

else r.enqueue ("Duncan");
flag = !flag;}

• (b)

BoundedQueueInterface<String> q = new ArrayQueue<String> (N);
BoundedQueueInterface<String> r = new ArrayQueue<String> (N);
for (int i = 0; i < N;, i++)

q.enqueue("Cardie");
while (!q.isEmpty()) {

while (!q.isEmpty())
r.enqueue(q.dequeue());

r.dequeue();
while (!r.isEmpty())

q.enqueue(r.dequeue());}

8

• (c)

UnboundedQueueInterface<String> q = new LinkedQueue<String> ();
UnboundedQueueInterface<String> r = new LinkedQueue<String> ();
q.add("Cardie");
for (int i = 0; i < N; i++) {

while (!q.isEmpty()) {
r.enqueue(q.dequeue());
r.enqueue("Duncan");}

while (!r.isEmpty())
q.enqueue (r.dequeue());}

9

Question 6 – Short Code Writing (10): In Project #2 you used an explicit stack to imple-
ment a backtrack search to solve Sudoku puzzles. This search is actually much easier to
implement using recursion.

Remember that you had a Board class whose objects have 9 by 9 arrays of numbers, with 0’s
representing unassigned cells. To make things simple and uniform for this question, we will
revise the Board class to have the following methods, which you may assume to be already
written:

public int getEntry (int row, int col)
// returns array entry from that row and column

public Board move (int row, int col, int value)
// returns a new Board with entry at that row and column changed to "value"

public boolean isBad ()
// returns true if calling Board has a positive number
// twice in any row, column, or box

Write a method public Board solution () to be added to the Board class. This method
should return null if the Board is not solvable (if it is not possible to replace the zeros with
positive numbers to get a valid completed puzzle). If there is a solution, the method should
return the first one in lexicographic order (just as SudokuSolver did in Project #2).

Your strategy should be to move toward a solution by finding the first unassigned cell, trying
all nine possible digits in that position, and for each one using a recursive call to see whether
there is a solution. There are two base cases for your recursion – one where you know that
no solution is possible and one where you know that the current Board is the solution.

10

Question 7 – Long Code Writing (20): A small Massachusetts town has asked you to design
a database for its dog licenses. The record of each license has three components: a license
number (which should be an int), a Person object representing the owner, and a Dog object
representing the dog to be licensed. Write the header and field declarations of the License
class. You may assume that you have standard getters and setters for each field, and a
constructor that takes a parameter to set each field. But if you need this class to have any
other methods, you must write them.

You also need to write a class LicenseDatabase such that a LicenseDatabase object stores
a set of License objects in a sorted list, where the objects are sorted by license number. You
will need to make sure that there are never two licenses with the same license number in the
list. Thus you must write the equals and compareTo methods for License that will make
this work.

LicenseDatabase will have the following methods:

public boolean addNewLicense (int number, Person owner, Dog d)
// adds new license with given data to database,
// unless another license with that number is there
// return value tells whether the addition was successful

public boolean removeLicense (int number)
// removes license with that number if it is there
// return value tells whether the removal had any effect

public License findDog (Dog d)
// returns the first License object with d.equals (dog) if any, otherwise null

The code handout has the ListInterface interface from DJW, and you may assume that the
class ArraySortedList implements this interface with the intended behavior for a sorted list.
The handout also has the Dog class from the first exam (with an equals method added), and
you may assume that there is a Person class that also has an equals method implemented.

Remember that DJW lists do not use iterator objects, but get the same functionality with
reset and getNext. If getNext is called when the current position is at the end, it goes to
the beginning.

11

OVERFLOW PAGE

12

Code Handout for CMPSCI 187 Second Midterm

The Dog class, slightly augmented:

public class Dog {
private String name;
private int age;

public Dog (String newName, int newAge) {
name = newName; age = newAge;}

public String getName {return name;}
public void setName (String newName) {name = newName;}
public int getAge (return age;}
public void setAge (int newAge) {age = newAge;}
public boolean equals (Dog other) {

if (!this.name.equals(other.name)) return false;
return (this.age == other.age);}

Several questions use these generic interfaces from DJW:

public interface QueueInterface<T> {
T dequeue();
boolean isEmpty ();}

public interface BoundedQueueInterface<T> extends QueueInterface<T> {
void enqueue (T element);
boolean isFull();}

public interface UnboundedQueueInterface<T> extends QueueInterface<T> {
void enqueue (T element);

Question 7 uses this generic interface from DJW:

public interface ListInterface<T> {
int size(); // number of elements in the list
void add (T element); // put "element" into the list
boolean contains (T element); // is "element" in the list?
boolean remove (T element); // returns whether element was there
T get (T element); // return item equal to "element" or return null
String toString(); // returns string describing list
void reset (); // sets current position to beginning of list
T getNext (); // returns item at current position,

// advances current position
}

13

