NAME:

CMPSCI 187
Programming With Data Structures
First Midterm Exam Fall 2012

D. A. M. Barrington 9 October 2012

DIRECTIONS:

e Answer the problems on the exam pages.

e There are seven questions on pages 3-10, most with mul-
tiple parts, for 100 total points. Probable scale is some-
where around A=93, C=69, but will be determined af-
ter I grade the exam.

e If you need extra space use the back of a page.

e No books, notes, calculators, or collaboration.

720

/10

715

/15

/10

/10

|| Y| W N~

720

Total /100

Questions 3-6 all deal with the following class (which is exactly the same as the class on the first
midterms from last year):

import java.util.*; // we will use Stack
public class Dog {

private String name;

private int age;

public Dog (String newName, int newAge) {
name = newName;
age = newAge;}

public String getName {return name;}

public void setName (String newName) {name = newName;}
public int getAge (return age;}

public void setAge (int newAge) {age = newAge;}}

Question 7 uses this generic class from DJW:

public class LLNode<T> {
private LLNode link;
private T info;
public LLNode (T info) {this.info = info; link = null;}
public void setInfo (T info) {this.info = info;}
public T getInfo() {return info;}
public void setLink (LLNode link) {this.link = link;}
public LLNode getLink () {return link;}}

Question 1 — Java Concepts (20): Briefly explain the difference between the two concepts in
each pair (2 points each): indicated:

e (a) String [] and String [1 []

e (b) the ArrayStringlog() and ArrayStringlog (int k) constructors in DJW

e (c) software and code

e (d) O(1) running time and O(n) running time

e (e) the ArrayStringLog (DJW) and StringBag (Project #1) classes

(f) postfix expressions and infix expressions

(g) guarding against an exception and catching an exception

e (h) pop in java.util.Stack and pop in DJW’s stack classes

(i) objects and primitives

e (j) observers and transformers

Question 2 — Software Engineering (10): Briefly discuss (in English) how you would make
the following modifications to the code for the specified program, with specific reference to

the code (5 points each):

e (a) In Project 1, to add a new method to StringBag called replace, which takes a
String as a parameter and replaces a randomly-chosen element of the bag with the
parameter, keeping all the other elements in the same position.

e (b) In Project 2, to add a method isUnique to SudokuSolver that takes a Board as
parameter and returns a boolean that is true if the Board denotes a puzzle with one
and only one solution. (The return value should be false if there is no solution or if

there are more than one.)

Question 3 — Tracing Code (15): Determine the output value of the following blocks of code.
In each case, assume that the Dog class from page 2 is present. Include a brief justification
of your answer.

e (a)

// uses java.util.Stack names for methods

Stack<Dog> left = new Stack<Dog>;

Stack<Dog> right = new Stack<Dog>;

right.push(new Dog("Duncan", 3)):

right.push(new Dog("Biscuit", 3));

right.push(new Dog("Cardie", 5));

right.push(new Dog("Ace", 6));

Dog newDog = new Dog("Sydney", 3));

while (!right.empty() && (right.peek().getAge() > newDog.getAge ())
left.push(right.pop());

right.push(newDog) ;

System.out.println(left.peek().getName());

int [] row = new int[9];
for (dnt i = 0; i < 9; i++)

row[i] = i + 1;
boolean duplicate = false;
for (int j = 0; j < 9; j++)

for (int k = 0; k < 9; k++)

if (row[j] == rowlk]) duplicate = true;

if (duplicate)

System.out.println ("Duplicate element exists");
else System.out.println ("Elements are unique");

Dog ace = new Dog ("Ace", 6);

Dog biscuit = new Dog ("Biscuit", 3);
Dog cardie = new Dog ("Cardie", 5);
Dog golden = cardie;

Dog pointer = ace;
pointer.setName("Cardie");
golden.setName (ace.getName());
biscuit.setName(cardie.getName());
pointer.setName("Biscuit");
System.out.println(ace.getName());
System.out.println(cardie.getName());

Question 4 — Finding Errors (15): Each of the following code fragments has a specific error
that either prevents it from compiling, will cause an exception if it is run, or will cause it to
produce a clearly unintended output. Find the error and explain what will happen (5 points
each):

e (a) (A new generic class)

public class Group<T> {
private T [] elements;
public Group () {
elements = new T[100];}}

e (b) (Uses DJW syntax for stacks)

ArrayStack<Dog> as = new ArrayStack<Dog> (10);
as.push (new Dog ("Ace", 6));
as.push (new Dog ("Biscuit", 3));
as.push (new Dog ("Cardie", 5));
while (as.top() != null)
as.pop();
as.push (new Dog ("Cardie", 5));

e (c)

Integer [] ia = new Integer [10];
for (int i = 0; i < 5; i++)
iali] = i;
for (int j = 0; j < ia.length; j++)
ial[jl++;

Question 5 — Timing Analysis (10): Find the worst-case asymptotic running time of each block
of code, as a function of the input size N (5 points each):

e (a) (a method to be added to the LinkedStringLog class)

public int sumLengths () {
int sum = 0;
LLStringNode cur = log; // "log" is the head of the list of N elements
while (cur != null) {
sum += cur.getInfo().length();
cur = cur.getLink();}
return sum;}

e (b) (This is pseudocode and uses the classes from Project #2.)

// create a Board object b with all cells unfixed

// read an array of N Move objects and call b.move() for each

// set all nonzero elements of b to be fixed

// solve the resulting sudoku puzzle using the solution to Project \#2

Question 6 — Short Code Writing (10): Write a class Kennel so that each Kennel object will
have an array dogs of Dog objects, and an int variable size that will keep track of how
many dogs are in the array. Don’t worry about error handling — if bad input to one of your
methods causes an exception, that is fine. The class should have the following methods:

a constructor Kennel (int k) that creates an object that can hold up to k Dog objects,
a boolean method free (int pos) that tells whether position pos now has no Dog in
it,

a void method insert(Dog d, int pos) that puts d into position pos if it is free, and
does nothing if it is not,

a method remove (int pos) that removes and returns the Dog in position pos, or
returns null if there is no Dog there, and

a void method consolidate() that moves all the Dog objects to an initial segment
of the locations — to positions 0 through size - 1, where size is the number of Dog
objects currently stored.

Question 7 — Long Code Writing (20): In this question you are to give complete definitions of
two classes, whose objects will each be linked lists of Dog objects. An AscendingAgeDogList
must have the property that every Dog in it has an age less than or equal to that of any Dog
following it. A DescendingAgeDogList has the opposite property, that every Dog in it has an
age greater than or equal to that of any Dog following it. (You may abbreviate these classes
AADL and DADL.)

(Note: These two classes are obviously going to be similar to each other. You may save
yourself writing by designing one of them, and then clearly indicating what has to be changed
to get the other.)

Using the LLNode<Dog> class from page 2, define each class to have the following methods:

e a constructor with no parameters that makes an empty list,

e a void method add (Dog d) that puts d at the head of the list if that meets the list’s
conditions, and does nothing otherwise,

a boolean method canAdd (Dog d) that tells whether d may legally be added at the
head of the list,

a method remove () that removes and returns the Dog from the head of the list, return-
ing null if the list is empty,

e a boolean method isEmpty() telling whether the list is empty, and
e a void method insert (Dog d) that inserts d into the list at the first legal place.

(Hint: The most difficult method to implement is insert. But you can do it by removing
the objects that are in the way of the place to insert, and storing them in an object of the
other class.)

10

