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Last week in lecture we introduced queues, both as presented in DJW with its three interfaces
and as they exist in java.util with the Queue interface. A queue is a linear data structure
that supports adding at the rear and removing from the front – the QueueInterface interface
in DJW has methods dequeue, and isEmpty, and its extensions BoundedQueueInterface and
UnboundedQueueInterface have an enqueue method, with or without an isFull method respec-
tively.

Here we define a related linear data structure called a deque for “double-ended queue” – the
word is pronounced like “deck” and should not be confused with the “dequeue” operation which is
pronunced like the letters “DQ”. In a deque we can add, remove, or look at elements at either end
– its methods are:

public interface Deque<T> {
public void addToFront (T element);
public T removeFront ( ) throws EmptyCollectionException;
public T first ( ) throws EmptyCollectionException;
public void addToRear (T element);
public T removeRear ( ) throws EmptyCollectionException;
public T last ( ) throwsEmptyCollectionException;
public boolean isEmpty ( );
public int size ( );}

Only the last two questions of this pencil-and-paper discussion deal with implementation of deques
– today we will mostly just be getting familiar with deques.
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Question 1: Once again assume that we have the Dog class defined and that we have declared
and created Dog objects named ace, biscuit, cardie, and duncan. Trace a deque (describing a
queue starting from the front) through the following sequence of operations, starting with an empty
Deque<Dog> object:

addToRear(cardie); addToFront(duncan); addToFront(biscuit); removeFront( ); addToRear(ace);
removeFront( ); addToRear(cardie); addToRear(duncan); removeFront( ); removeRear( );
addToFront(biscuit);

Question 2: Write a method switchLastTwo to go into a class DequeClass that implements
Deque, using Deque methods to duplicate the functionality of Discussion #5’s method with the
same name in the DogTeam class. (It switches the last two elements if there are at least two, and
otherwise does nothing.)

Question 2: Write complete code for two new generic classes: DequeStack<T> and DequeQueue<T>,
each of which will extend a class DequeClass<T> that implements Deque<T>. The class DequeStack<T>
should have the methods push, pop (as in DJW), and top, and the class DequeQueue<T> should have
the methods enqueue and dequeue. Implement these methods by calling on those of DequeClass<T>.
You may leave out the constructors (why?).

Question 4: (only if time) Do you think it will be easy to implement a deque with a circular array
like the one for ArrayBoundedQueue and ArrayUnboundedQueue? Why or why not?

Question 5: (only if time) Do you think it will be easy to implement a deque with linear nodes
like those we used for LinkedStack and DogTeam? Why or why not?
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