
CMPSCI 187: Programming With Data Structures

Lecture 8: Polymorphism, Generics, and Exceptions
23 September 2011

Polymorphism, Generics, and Exceptions

• Object Polymorphism as in the Dog/Terrier Example

• Method Polymorphism Through Supertypes

• Why Not Always Use Object?

• Defining and Using Generic Types

• Exceptions and How They Can be Dealt With

• The Exceptions Class Hierarchy

Object Polymorphism: The Dog/Terrier Example

• A polymorphic reference in Java code is a use of a variable in such a way
the the behavior at run-time can depend on the actual class of the variable
value.

• In general polymorphism (“many shapes”) refers to any programming
language concept that can deal with data of different kinds.

• In our example where the Dog and Terrier classes each have their own bark
() method, any reference x.bark(), where x is a Dog variable, is
polymorphic because the method invoked depends on the class of x’s value
at run time.

Method Polymorphism Through Supertypes

• In an example where different kinds of Dogs bark in different ways, we can
define a method in the Dog class that gets overridden as needed. This works
because there is a single supertype of all the classes that need to bark.

• So we can call the bark method from a Dog variable and the right method will
run.

• But this isn’t always satisfactory -- what if we had a method that was
appropriate for some Dogs and not others, and the classes that were good
for it did not form a single subclass of Dog.

• We could define a dummy method in the Dog class, that caused an exception
if it were ever called. This should work because we only want to call it for the
good Dogs. But this is not elegant and seems likely to lead to errors.

Why Not Always Use Object?

• In a sense this unsatisfactory method is what we saw with the toString
method of the class Object. Most classes need to have a toString method,
and the desired String for an object depends entirely on the class. When we
don’t define the toString method, we get the default one.

• Suppose we have several different classes, unrelated in the class hierarchy,
that all need to run the same method polymorphically.

• They aren’t entirely unrelated, because they are all subclasses of Object.

• But we can’t add another method to the Object class ourselves, because the
code for the Object class is a fixed part of the Java language.

• We need a “fake superclass” of our diverse classes.

Polymorphism With Interfaces

• An interface lies, in our diagram, above each of the classes implementing it.

• So it is in a sense a common “ancestor” of those classes.

• Suppose we have classes Human, Horse, and Train that each need to
implement a move method in its own way, but those three classes are
unrelated in the class hierarchy.

• We can define an interface Movable and have each of the three classes
implement it.

• Then a variable of type Movable can have its move method called,
polymorphically, and the correct code will be bound at run-time for the object.
Now we can’t possibly call the method from an object that doesn’t have it.

Defining and Using Generic Types

• We’ve seen the example of a generic class, Stack<T>, and a generic
interface, L&S’s StackADT<T>. Each makes a class, or interface, out of each
possible class T.

• To write the code for a generic class or interface, we just put a class variable
in angle brackets in the name of the class (T is traditional), and use T in the
body as if it were a defined class.

• As we’ve seen, we use a particular one of these classes by referring, for
example, to Stack<Cell>. It’s as if we had a class written that replaced all
the T’s in the body of Stack<T> with Cells.

• We can restrict T in the generic class definition, by replacing <T> with, for
example, <T extends Dog> or <T implements Comparable>.

Exceptions and How They Can Be Dealt With

• We’ve seen exceptions in our projects, particularly during debugging. Most
have been run-time errors, mistakes that crash our execution. These
generally went away when we fixed the programming errors that caused
them.

• But exceptions could be caused by user behavior even if our code is correct
on normal input. We’d like to anticipate and deal with this, without just having
the exception crash the program.

• Exceptions can be created by Java’s code or our own -- we can say if
(thisHappens) throw new SomeKindOfException(“Uh Oh”);

• There are two ways to deal with an exception -- we can catch it or throw it to
another method where it is caught and dealt with.

Throwing and Catching Exceptions

• If we have a some code in which we anticipate an exception that we can deal
with, we can enclose it in a try block.

• If this try block is followed by one or more catch blocks, then at run time
the interpreter sees whether the try block generates an exception that
matches the exception variable declared in one of the catch blocks. If the
catch block thus catches the exception, the interpreter runs the code in the
first block for which this is true. Otherwise the exception is not caught there.

• We can put a finally block after the try and catch blocks, and it will
be whatever happens. This is usually to clean up input/output objects.

• An uncaught exception crashes the execution unless it is thrown to the calling
method by a throws clause. If the method call is in a try block, it could
be caught in that method, or thrown further.

The Exceptions Class Hierarchy

• Exceptions are Objects, of a particular subclass called Throwable, and they
have their own hierarchy of subclasses. (See the diagram on page 518 of
L&C, or the more complete list on page 64 of Java Precisely.)

• An exception is caught if its class fits into the type of the exception variable of
the catch block.

• A checked exception is one such that any method that might produce one
must have a throws clause in its declaration, matching (or “covering”) any
exception that could be thrown. Checked exceptions mostly involve file I/O,
which is one reason that intro Java instructors try to avoid file I/O.

• You can declare your own subtypes of Exception, for behavior you anticipate
and can deal with. They can be checked or unchecked depending on what
they extend.

