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Collections and Abstract Stacks

• Catchup: Big-O time for three kinds of searches

• The Collections Idea

• Terminology: Data Types, Abstract Data Types, Data Structures

• The Stack ADT in Java Terms, L&C’s StackADT Interface

• Using a Stack: Searching for a Path as in Project #2

• Why Does the Search Algorithm Work?



The Collections Idea

• As we said last time, a Collection is a set of objects of a common type.

• Different kinds of Collection will support different operations to add objects, 
remove objects, or look at particular aspects of the objects.

• In Discussion #1 the objects were containers and we kept them in two 
Collections, the stack and the buffer.

• The key to defining a kind of Collection is the interface between the user and 
the Collection -- what operations can the user request, and what will be their 
result, depending on the contents of the Collection?



Terminology: Data Types, ADT’s, and Data 
Structures

• A data type is a set of values and accompanying operations, such as the 
eight primitive types in Java.  The type of a variable that represents an object 
is the set of object classes that could legally be the value of that variable.

• An abstract data type or ADT is a data type whose values and operations 
are given not by the language definition but by code.  Here “abstract” means 
that the details of the implementation are hidden from the user.

• An application programming interface or API is a formal specification of an 
ADT, with a list of its methods, their signatures, and their intended behaviors.

• A data structure is the set of programming constructs used to implement a 
collection.  For example, we will soon use an array data structure to 
implement the Stack ADT.



The Stack ADT in Java Terms

• An implementation of Stack must contain the following methods:

public void push (T newElement);
// makes newElement the new top element

public T pop ( );
// returns and removes the top element

public T peek ( ); 
// returns top element but does not remove it

public boolean isEmpty( );
// returns true if stack has no elements

public int size ( );
// returns number of elements in stack

public String toString ( );
// return a string describing the stack



Stack versus StackADT in L&C

• On page 42 L&C give a Java interface called StackADT with the methods on 
the previous slide.  As a generic, it defines a type StackADT<T> for any 
possible type T.

• They will give two implementations for this interface -- they will be Java 
classes that implement the interface:  ArrayStack and LinkedStack.

• Java’s Stack<T> class also implements this interface, but because it extends 
another Java class called Vector it has additional methods that shouldn’t be 
allowed for a stack.  L&C also want to illustrate the separation between ADT 
and implementation with this data type.

• We’ll just use Stack in Project #2, though our code should work with any 
implementation of StackADT.



Using a Stack: Searching for a Path (Project #2)

• A path in a maze is a sequence of moves from one cell to the next, where 
each move is one step up, down, right, or left.  A path goes from one node 
(the source) to another (the destination).

• Given a Maze, a source, and a destination, we’d like to know whether a path 
exists (using open Cells only) and find a path if it does.

• We’ll do this with a Stack<Cell> object.  Our stack at any time will 
represent a trial path starting at the source.  We can add cells to this path at 
the end, and remove them from the end.  If we ever put the destination on the 
stack, we know we have found a path.  We’ll take the nodes off the stack and 
put them in an array.

• If we give up, we will return an array of length 0, or a false boolean.



Depth-First or Backtrack Search

• Here’s the idea.  Whenever we put a cell on the stack, it will stay there until 
we have finished with it, meaning that we have looked at and finished all of its 
open neighbors.

• If we finish the source without finding the destination, then the destination 
must be unreachable.  (Think about it -- we’ll give an argument soon.)

• If we find the destination, we’ve got a path and thus know that a path exists.

• We mark a cell as seen if it is on the stack or we have finished with it.  There 
is never a need to revisit a node that has been seen.

• To mark cells as seen we must create a new type SCell extending Cell.



More on DFS/Backtrack Search

• We call the search depth-first because if we arranged all of our visits to 
nodes in a tree, we explore nodes that are deeper in the tree first -- we make 
the trial path as long as we can before we finish with any nodes.

• In 250 and 311 you’ll also see breadth-first search, where we explore all 
short paths before we look at any longer ones.  This is implemented with a 
queue rather than with a stack.

• This method is called backtrack search, especially in AI, because we remove 
cells from the trial path if we discover that they don’t lead to success, and 
then consider alternative choices to these nodes.

• It’s crucial that we can mark nodes that have been processed -- otherwise 
our search could visit the same node far too many times, or even forever.



Why Does the Search Always Work?

• This is more of a 250 question, but how do we know that this search will always 
find a path if one exists?  

• If there is a path, it has a finite number of cells on it: c0, c1,..., ck where c0 is 
the source and ck the destination.

• We start by putting c0 on the stack.  At some time before we take c0 off, we 
put c1 on because c1 is a neighbor.  We put c2 on before taking c1 off, put c3 
on before taking c2 off, and so on, so eventually we put ck on (and declare 
victory) before taking c0 off.

• In 250 we’ll prove this by mathematical induction, but this is a pretty solid 
argument that we won’t ever give up on the search if the path exists.



What Happens if There Isn’t a Path?

• Of course if no path exists, we will not find one.  But we should satisfy 
ourselves that we won’t get stuck in a loop.  

• This is easy to see because there are only finitely many nodes, each node has 
only finitely many neighbors, and we never look at a node after it is finished.  

• In 311 you’ll prove that DFS takes time proportional to the number of nodes 
times the number of neighbors per node.


