Arithmetic Circuits: A Survey

David Mix Barrington
UMass Amherst Theory Seminar
21 February 2012

Sources: Vollmer, Introduction to Circuit Complexity, Chapter 5
Allender, Arithmetic Circuits and Counting Complexity Classes
Arithmetic Circuits: A Survey

- Boolean Circuit Complexity
- Counting Classes
- Basic Arithmetic Circuit Classes
- Ben-Or-Cleve: NC^1 Arithmetic Circuits = Matrix Programs
- Open Problems: #BWBP vs. #NC^1, NC^1 vs. GapNC^1
- The Classes #AC^0, DiffAC^0, and GapAC^0
- Characterizing TC^0 With Arithmetic Circuits
Boolean Circuit Complexity

• We can measure the complexity of problems by the size and depth of the circuit families needed to compute them. A family has one circuit for each input size n, and size and depth are functions of n. We also need to constrain the uniformity of the family, for example by having all the circuits produced by a resource-bounded machine, or defined by a single logical formula.

• The class P, up to uniformity, corresponds to poly-size boolean circuits. Within P we have the NC hierarchy of circuit classes, where NC^i and AC^i are each defined by circuits of poly size and depth $O(\log^i n)$, with fan-in two and unbounded fan-in respectively. The more familiar classes L and NL lie between NC^1 and AC^1, with SAC^1 or $LOGCFL$ between NL and AC^1.

• The smallest class AC^0 is known not to contain the XOR function. Adding mod gates for one prime to AC^0 does not give you other primes, but adding mod 6 gates defeats all known lower bound techniques -- maybe $AC^0[6] = NP$.

The Class NC1

- A log-depth, fan-in two boolean circuit may be arranged as a tree by duplicating gates, and still has poly size. Any poly-size tree circuit has an equivalent log-depth tree circuit by a tree balancing argument.

- Every regular language is in NC1, because running a DFA can be thought of as evaluating a product in a **finite monoid** and this can be done with a binary tree of subcircuits that each have $O(1)$ size and depth. But some regular languages, corresponding to nonsolvable (particularly non-commutative) monoids, are complete for NC1 -- we can convert a log-depth boolean circuit into an iterated multiplication in such a monoid.

- We can carry out **iterated addition** (and hence multiplication) of binary integers in NC1. This problem may well not be complete for NC1-- the subclass TC0 of NC1 is what we can do with constant-depth unbounded fan-in **majority gates**. By careful use of the Chinese Remainder Theorem, we can do **iterated multiplication** of binary integers in TC0.
Counting Classes

• Last week Marco defined the function classes #P and #L. A function f from \{0,1\}^* to \mathbb{N} is in #P if there is a poly-time NDTM M such that for any string x, f(x) is the number of accepting paths of M on x. #L is the same for a log-space NDTM. To get functions from \{0,1\}^* to \mathbb{Z}, we define GapP and GapL to be the functions that are the difference of two #P or #L functions respectively.

• We can also count accepting subtrees of a circuit -- subtrees that include at least one child of each of their OR nodes, all children of each of their AND nodes, and only 1's at leaves. When we use circuit characterizations of NL and NP (which we’ll see soon), #P and #L fit in with the counting circuit classes \#SAC^1, \#NC^1, and \text{AC}^0.

• We can count the accepting subtrees of a boolean circuit by evaluating the corresponding arithmetic circuit, replacing AND by \times and OR by +.
Basic Arithmetic Circuit Classes

• What happens if we place size and depth constraints on families of arithmetic circuits? Poly-size circuits pose a problem in that in general \times gates square the largest number available, so poly depth gives exponential size numbers.

• If we define degree of a circuit (by max for + and adding for \times), we guarantee that poly-size circuits only create numbers of poly-many bits.

• Poly size and poly degree gives GapSAC1, not GapP -- the latter turns out to be exponential size and poly degree (following a circuit definition of NP). GapL turns out to be poly-size skew circuits where one input of every \times gate must be an input.

• GapNC1 and GapAC0 have sensible definitions in terms of arithmetic circuits over integers. We also have # classes defined by circuits over \mathbb{N} rather than \mathbb{Z}.
As with boolean NC1, we can turn a GapNC1 circuit into an iterated product, in this case over 3×3 matrices of integers.

We show that for any $i \neq j$, we can form a matrix with 1’s on the diagonal and one entry for f, the circuit value, in the ij position. If we can make both f and $-f$ for any function, we can implement $+$ gates by simple product and \times gates by a commutator construction as $\mathbb{Z}^{3 \times 3}$ is sufficiently non-commutative. A circuit of depth d turns into a product of at most 4^d matrices.

\[
\begin{bmatrix}
1 & x & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & y & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & x+y & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & y & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & x+y & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -y \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & x+y & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -y \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & xy & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -y \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & xy & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
Two Open Problems in the \#NC^1 Area

- But this trick crucially depends on the existence of additive inverses in \(\mathbb{Z} \). If we look at \(k \times k \) matrices over \(\mathbb{N} \), we can define the class \#BWBP of functions defined by poly-length products (or by counting paths through a bounded width branching program). It is easy to see that \#BWBP \(\subseteq \#NC^1 \), but the opposite inclusion is open. (There seems to no reason it should be true, but we have no lower bound techniques yet against \#BWBP.)

- By Chinese remaindering, we can implement iterated multiplication in \(\mathbb{Z}^{3\times3} \) by iterated multiplications in parallel over \(\mathbb{Z}_p^{3\times3} \) for poly-many primes of \(O(\log n) \) bits. This costs us \(NC^1 \) (actually \(TC^0 \)) for the translation in and out of CRR. We can repeat the process until we have multiplication over matrices with constant modulus, which is in \(NC^1 \). So we can compute \(\text{GapNC}^1 \) with boolean circuits of fan-in two and depth \(O(\log n \log^* n) \), or majority circuits of depth \(O(\log^* n) \). This is very very close to collapsing this class to boolean \(NC^1 \).
Arithmetic Versions of AC^0

- $\#\text{AC}^0$ is defined in terms of unbounded fan-in $+$ and \times gates, with 0 and 1 inputs. GapAC^0 actually poses a problem in definition, as it is not obvious that the two definitions we have used coincide. From the circuit standpoint we would allow -1 constant gates, but starting from the GapP definition we would look at the difference of two $\#\text{AC}^0$ functions. Perhaps confusingly, the class with -1 constants is called “GapAC0” and the other “DiffAC0”. The good news is that the two classes coincide. (At all the higher classes we had the parity function, the sum of the inputs mod 2, available in the $\#$ class.)

- The construction of a DiffAC^0 pair for an arbitrary GapAC^0 is recursive -- for each gate g we construct two $\#\text{AC}^0$ functions P and N such that $g = P - N$. This is easy for constants, and for a gate that is the sum of other gates g_i each with its own pair of functions P_i and N_i. The difficulty is to compute P and N such that $P - N$ is the product of the functions $P_i - N_i$.
Simulating a Product Gate in DiffAC0

- The product of $(P_i - N_i)$ has 2^n terms -- for every set $L \subseteq \{1, \ldots, n\}$ and its complement R, we have $(-1)^{|L|} \prod_{L} P_i \prod_{R} N_i$, which we'll call $(-1)^j f(L, R)$.

- The trick is to express this sum as an integer linear combination of $n+1$ different products, $X_k = \prod_{L} (P_i + kN_i)$ for each k from 0 through n. Each of these products can be computed in $\#AC^0$ assuming that each P_i and N_i can.

- We compute each X_k as a sum of the products $f(L, R)$, define variables c_k for k from 0 through n, and equate $\sum_k c_k X_k$ to our product above. Collecting the sets of terms for each $|L|$, we wind up with the set of linear equations $\sum_k k c_k = (-1)^j$, $n+1$ equations in the $n+1$ unknowns. The matrix of this set of equations turns out to be a Vandemonde matrix and can be solved to give us the coefficients $c_k = (-1)^{k+1} k(n+2 \text{ choose } k+1)$.
TC0 in Terms of Arithmetic Circuits

- As Marco told us last week, there are several ways to take a function class like #P and make a language class from it. For example, NP is the set of languages L such that there is a #P function f such that f(x) > 0 iff x ∈ L. UP is the set of languages L such that the characteristic function χ_L is in #P.

- C=P is the set of L such that for some f in GapP, $f(x) = 0$ iff x ∈ L. PP is the corresponding set for $f(x) > 0$. It turns out that the classes C=AC0 and PAC0 are both equal to the already-defined boolean circuit class TC0.

- Since iterated addition and iterated multiplication are in TC0, even under log-time uniformity, a TC0 circuit can just evaluate a GapAC0 function and make the proper comparison at the end.

- Evaluating a TC0 circuit with a GapAC0 function is a bit harder.
Simulating TC0 With a GapAC0 Function

• By a bit of hacking, we can show how to convert any TC0 circuit into one that has only exact threshold gates, that have m inputs and return 1 iff the inputs are exactly evenly split between 0 and 1. We also want the circuit to be levelled, so that every path from a given gate to an input has the same length.

• We let μ be the product $\prod_{j \neq m/2} (m/2 - j)$. For each gate g at level t of the exact threshold circuit, we’ll construct a GapAC0 function that is 0 if g evaluates to 0, and μ^t if g evaluates to 1.

• Suppose that f_1,\ldots,f_n are each GapAC0 functions that are equal to μ^i or 0 as the gates g_1,\ldots,g_n are 1 or 0, and that g is the exact threshold of the g_i’s. The product $\prod_{j \neq m/2} (\sum_i f_i - j\mu^i)$ is clearly in GapAC0, and evaluates to 0 unless exactly half the f_i’s are nonzero. In this case the product is μ^{t+1}.
Lower Bounds Against GapAC0

- Let $f(n)$ be the familiar Fibonacci function. Given a string of boolean inputs $x = x_1, ..., x_n$ we can let $F(x) = f(\sum x_i)$. This is a natural-number function ranging from 0 to $f(n)$.

- If h is any GapAC0 function, look at the boolean function b given by the **low-order bit** of h. Suppose we take the circuit for h and replace each $+$ gate with a boolean \oplus gate, and each \times gate with a boolean \land gate. We now have an AC$^0[2]$ circuit that computes b. It’s fairly easy to see that a boolean function is in AC$^0[2]$ if and only if it is the low-order bit of a GapAC0 function.

- Smolensky’s Theorem says that the mod-3 function cannot be computed by an AC$^0[2]$ circuit. Thus our F function above cannot possibly be in GapAC0.

- There is a hope (not yet realized) that such lower bounds could help in proving lower bounds against TC0. They do separate GapAC0 from GapNC1.