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Arithmetic Circuits: A Survey

• Boolean Circuit Complexity

• Counting Classes

• Basic Arithmetic Circuit Classes

• Ben-Or-Cleve: NC1 Arithmetic Circuits = Matrix Programs

• Open Problems: #BWBP vs. #NC1, NC1 vs. GapNC1 

• The Classes #AC0, DiffAC0, and GapAC0

• Characterizing TC0 With Arithmetic Circuits



Boolean Circuit Complexity

• We can measure the complexity of problems by the size and depth of the 
circuit families needed to compute them.  A family has one circuit for each 
input size n, and size and depth are functions of n.  We also need to constrain 
the uniformity of the family, for example by having all the circuits produced 
by a resource-bounded machine, or defined by a single logical formula.

• The class P, up to uniformity, corresponds to poly-size boolean circuits.  
Within P we have the NC hierarchy of circuit classes, where NCi and ACi are 
each defined by circuits of poly size and depth O(logi n), with fan-in two and 
unbounded fan-in respectively.  The more familiar classes L and NL lie 
between NC1 and AC1, with SAC1 or LOGCFL between NL and AC1.

• The smallest class AC0 is known not to contain the XOR function.  Adding 
mod gates for one prime to AC0 does not give you other primes, but adding 
mod 6 gates defeats all known lower bound techniques -- maybe AC0[6] = NP.



The Class NC1

• A log-depth, fan-in two boolean circuit may be arranged as a tree by 
duplicating gates, and still has poly size.  Any poly-size tree circuit has an 
equivalent log-depth tree circuit by a tree balancing argument.

• Every regular language is in NC1, because running a DFA can be thought of as 
evaluating a product in a finite monoid and this can be done with a binary 
tree of subcircuits that each have O(1) size and depth.  But some regular 
languages, corresponding to nonsolvable (particularly non-commutative) 
monoids, are complete for NC1 -- we can convert a log-depth boolean circuit 
into an iterated multiplication in such a monoid.

• We can carry out iterated addition (and hence multiplication) of binary 
integers in NC1.  This problem may well not be complete for NC1-- the 
subclass TC0 of NC1 is what we can do with constant-depth unbounded fan-
in majority gates.  By careful use of the Chinese Remainder Theorem, we 
can do iterated multiplication of binary integers in TC0. 



Counting Classes

• Last week Marco defined the function classes #P and #L.  A function f from 
{0,1}* to 𝗡 is in #P if there is a poly-time NDTM M such that for any string x, 
f(x) is the number of accepting paths of M on x.  #L is the same for a log-
space NDTM.  To get functions from {0,1}* to ℤ, we define GapP and GapL to 
be the functions that are the difference of two #P or #L functions respectively.

• We can also count accepting subtrees of a circuit -- subtrees that include at 
least one child of each of their OR nodes, all children of each of their AND 
nodes, and only 1’s at leaves.  When we use circuit characterizations of NL 
and NP (which we’ll see soon), #P and #L fit in with the counting circuit 
classes #SAC1, #NC1, and AC0.

• We can count the accepting subtrees of a boolean circuit by evaluating the 
corresponding arithmetic circuit, replacing AND by × and OR by +.



Basic Arithmetic Circuit Classes

• What happens if we place size and depth constraints on families of arithmetic 
circuits?  Poly-size circuits pose a problem in that in general × gates square the 
largest number available, so poly depth gives exponential size numbers.

• If we define degree of a circuit (by max for + and adding for ×), we guarantee 
that poly-size circuits only create numbers of poly-many bits.

• Poly size and poly degree gives GapSAC1, not GapP -- the latter turns out to 
be exponential size and poly degree (following a circuit definition of NP).  GapL 
turns out to be poly-size skew circuits where one input of every × gate must 
be an input.

• GapNC1 and GapAC0  have sensible definitions in terms of arithmetic circuits 
over integers.  We also have # classes defined by circuits over 𝗡 rather than ℤ.



Ben-Or-Cleve: Circuits as Matrix Products

• As with boolean NC1, we can turn a GapNC1 circuit into an iterated product, 
in this case over 3 × 3 matrices of integers.

• We show that for any i ≠ j, we can form a matrix with 1’s on the diagonal and 
one entry for f, the circuit value, in the ij position.  If we can make both f and -f 
for any function, we can implement + gates by simple product and × gates by 
a commutator construction as ℤ3×3 is suffficiently non-commutative.  A circuit 
of depth d turns into a product of at most 4d matrices.

|1 x 0| |1 y 0|   |1 x+y 0|
|0 1 0| |0 1 0| = |0  1  0|
|0 0 1| |0 0 1|   |0  0  1|

|1  0  0| |1 0 y| |1 0 0| |1 0 -y|   |1  0 y| |1 0 -y|   |1 xy 0|
|0  1  0| |0 1 0| |0 1 0| |0 1  0| = |0  1 0| |0 1  0| = |0  1 0|
|0 -x  1| |0 0 1| |0 x 1| |0 0  1|   |0 -x 1| |0 x  1|   |0  0 1|



Two Open Problems in the #NC1 Area

• But this trick crucially depends on the existence of additive inverses in ℤ.  If 
we look at k × k matrices over 𝗡, we can define the class #BWBP of functions 
defined by poly-length products (or by counting paths through a bounded 
width branching program).  It is easy to see that #BWBP ⊆ #NC1, but the 
opposite inclusion is open.  (There seems to no reason it should be true, but 
we have no lower bound techniques yet against #BWBP.)

• By Chinese remaindering, we can implement iterated multiplication in ℤ3×3 by 
iterated multiplications in parallel over ℤp3×3 for poly-many primes of O(log n) 
bits.  This costs us NC1 (actually TC0) for the translation in and out of CRR.  
We can repeat the process until we have multiplication over matrices with 
constant modulus, which is in NC1.  So we can compute GapNC1  with 
boolean circuits of fan-in two and depth O(log n log*n), or majority circuits of 
depth O(log*n).  This is very very close to collapsing this class to boolean NC1.



Arithmetic Versions of AC0

• #AC0 is defined in terms of unbounded fan-in + and × gates, with 0 and 1 
inputs.  GapAC0 actually poses a problem in definition, as it is not obvious 
that the two definitions we have used coincide.  From the circuit standpoint 
we would allow -1 constant gates, but starting from the GapP definition we 
would look at the difference of two #AC0 functions.  Perhaps confusingly, the 
class with -1 constants is called “GapAC0” and the other “DiffAC0”.  The good 
news is that the two classes coincide.  (At all the higher classes we had the 
parity function, the sum of the inputs mod 2, available in the # class.)

• The construction of a DiffAC0 pair for an arbitrary GapAC0 is recursive -- for 
each gate g we construct two #AC0 functions P and N such that g = P - N.  
This is easy for constants, and for a gate that is the sum of other gates gi 
each with its own pair of functions Pi and Ni.  The difficulty is to compute P 
and N such that P - N is the product of the functions Pi - Ni.



Simulating a Product Gate in DiffAC0

• The product of (Pi - Ni) has 2n terms -- for every set L ⊆ {1,...,n} and its 
complement R, we have (-1)|L|∏LPi∏RNi which we’ll call (-1)j f(L, R).

• The trick is to express this sum as an integer linear combination of n+1 
different products, Xk = ∏n (Pi + kNi) for each k from 0 through n.  Each of 
these products can be computed in #AC0 assuming that each Pi and Ni can.

• We compute each Xk as a sum of the products f(L, R), define variables ck for k 
from 0 through n, and equate ∑k ck Xk to our product above.  Collecting the 
sets of terms for each |L|, we wind up with the set of linear equations ∑k kjck = 
(-1)j, n+1 equations in the n+1 unknowns.  The matrix of this set of equations 
turns out to be a Vandemonde matrix and can be solved to give us the 
coefficients ck = (-1)k+1k(n+2 choose k+1).



TC0 in Terms of Arithmetic Circuits

• As Marco told us last week, there are several ways to take a function class 
like #P and make a language class from it.  For example, NP is the set of 
languages L such that there is a #P function f such that f(x) > 0 iff x ∈ L.  UP is 
the set of languages L such that the characteristic function χL is in #P.  

• C=P is the set of L such that for some f in GapP, f(x) = 0 iff x ∈ L.  PP is the 
corresponding set for f(x) > 0.  It turns out that the classes C=AC0 and PAC0 
are both equal to the already-defined boolean circuit class TC0.

• Since iterated addition and iterated multiplication are in TC0, even under log-
time uniformity, a TC0 circuit can just evaluate a GapAC0 function and make 
the proper comparison at the end. 

• Evaluating a TC0 circuit with a GapAC0 function is a bit harder.



Simulating TC0 With a GapAC0 Function

• By a bit of hacking, we can show how to convert any TC0 circuit into one that 
has only exact threshold gates, that have m inputs and return 1 iff the inputs 
are exactly evenly split between 0 and 1.  We also want the circuit to be 
levelled, so that every path from a given gate to an input has the same length.

• We let μ be the product ∏j ≠ m/2 (m/2 - j).  For each gate g at level t of the exact 
threshold circuit, we’ll construct a GapAC0 function that is 0 if g evaluates to 0, 
and μt if g evaluates to 1.  

• Suppose that f1,...,fn are each GapAC0 functions that are equal to μt or 0 as the 
gates g1,...,gn are 1 or 0, and that g is the exact threshold of the gi’s.  The 
product ∏j ≠ m/2 ((∑i fi) - jμt) is clearly in GapAC0, and evaluates to 0 unless 
exactly half the fi’s are nonzero.  In this case the product is μt+1.



Lower Bounds Against GapAC0

• Let f(n) be the familiar Fibonacci function.  Given a string of boolean inputs x 
= x1,...,xn we can let F(x) = f(∑ixi).  This is a natural-number function ranging 
from 0 to f(n).

• If h is any GapAC0 function, look at the boolean function b given by the low-
order bit of h.  Suppose we take the circuit for h and replace each + gate 
with a boolean ⊕ gate, and each × gate with a boolean ∧ gate.  We now have 
an AC0[2] circuit that computes b.  It’s fairly easy to see that a boolean 
function is in AC0[2] if and only if it is the low-order bit of a GapAC0 function.

• Smolensky’s Theorem says that the mod-3 function cannot be computed by 
an AC0[2] circuit.  Thus our F function above cannot possibly be in GapAC0.

• There is a hope (not yet realized) that such lower bounds could help in 
proving lower bounds against TC0.  They do separate GapAC0 from GapNC1.


