
Arithmetic Circuits: A Survey

David Mix Barrington
UMass Amherst Theory Seminar
21 February 2012

Sources: Vollmer, Introduction to Circuit Complexity, Chapter 5
 Allender, Arithmetic Circuits and Counting Complexity Classes

Arithmetic Circuits: A Survey

• Boolean Circuit Complexity

• Counting Classes

• Basic Arithmetic Circuit Classes

• Ben-Or-Cleve: NC1 Arithmetic Circuits = Matrix Programs

• Open Problems: #BWBP vs. #NC1, NC1 vs. GapNC1

• The Classes #AC0, DiffAC0, and GapAC0

• Characterizing TC0 With Arithmetic Circuits

Boolean Circuit Complexity

• We can measure the complexity of problems by the size and depth of the
circuit families needed to compute them. A family has one circuit for each
input size n, and size and depth are functions of n. We also need to constrain
the uniformity of the family, for example by having all the circuits produced
by a resource-bounded machine, or defined by a single logical formula.

• The class P, up to uniformity, corresponds to poly-size boolean circuits.
Within P we have the NC hierarchy of circuit classes, where NCi and ACi are
each defined by circuits of poly size and depth O(logi n), with fan-in two and
unbounded fan-in respectively. The more familiar classes L and NL lie
between NC1 and AC1, with SAC1 or LOGCFL between NL and AC1.

• The smallest class AC0 is known not to contain the XOR function. Adding
mod gates for one prime to AC0 does not give you other primes, but adding
mod 6 gates defeats all known lower bound techniques -- maybe AC0[6] = NP.

The Class NC1

• A log-depth, fan-in two boolean circuit may be arranged as a tree by
duplicating gates, and still has poly size. Any poly-size tree circuit has an
equivalent log-depth tree circuit by a tree balancing argument.

• Every regular language is in NC1, because running a DFA can be thought of as
evaluating a product in a finite monoid and this can be done with a binary
tree of subcircuits that each have O(1) size and depth. But some regular
languages, corresponding to nonsolvable (particularly non-commutative)
monoids, are complete for NC1 -- we can convert a log-depth boolean circuit
into an iterated multiplication in such a monoid.

• We can carry out iterated addition (and hence multiplication) of binary
integers in NC1. This problem may well not be complete for NC1-- the
subclass TC0 of NC1 is what we can do with constant-depth unbounded fan-
in majority gates. By careful use of the Chinese Remainder Theorem, we
can do iterated multiplication of binary integers in TC0.

Counting Classes

• Last week Marco defined the function classes #P and #L. A function f from
{0,1}* to 𝗡 is in #P if there is a poly-time NDTM M such that for any string x,
f(x) is the number of accepting paths of M on x. #L is the same for a log-
space NDTM. To get functions from {0,1}* to ℤ, we define GapP and GapL to
be the functions that are the difference of two #P or #L functions respectively.

• We can also count accepting subtrees of a circuit -- subtrees that include at
least one child of each of their OR nodes, all children of each of their AND
nodes, and only 1’s at leaves. When we use circuit characterizations of NL
and NP (which we’ll see soon), #P and #L fit in with the counting circuit
classes #SAC1, #NC1, and AC0.

• We can count the accepting subtrees of a boolean circuit by evaluating the
corresponding arithmetic circuit, replacing AND by × and OR by +.

Basic Arithmetic Circuit Classes

• What happens if we place size and depth constraints on families of arithmetic
circuits? Poly-size circuits pose a problem in that in general × gates square the
largest number available, so poly depth gives exponential size numbers.

• If we define degree of a circuit (by max for + and adding for ×), we guarantee
that poly-size circuits only create numbers of poly-many bits.

• Poly size and poly degree gives GapSAC1, not GapP -- the latter turns out to
be exponential size and poly degree (following a circuit definition of NP). GapL
turns out to be poly-size skew circuits where one input of every × gate must
be an input.

• GapNC1 and GapAC0 have sensible definitions in terms of arithmetic circuits
over integers. We also have # classes defined by circuits over 𝗡 rather than ℤ.

Ben-Or-Cleve: Circuits as Matrix Products

• As with boolean NC1, we can turn a GapNC1 circuit into an iterated product,
in this case over 3 × 3 matrices of integers.

• We show that for any i ≠ j, we can form a matrix with 1’s on the diagonal and
one entry for f, the circuit value, in the ij position. If we can make both f and -f
for any function, we can implement + gates by simple product and × gates by
a commutator construction as ℤ3×3 is suffficiently non-commutative. A circuit
of depth d turns into a product of at most 4d matrices.

1 x 0		1 y 0		1 x+y 0
0 1 0		0 1 0	=	0 1 0
0 0 1		0 0 1		0 0 1

1 0 0		1 0 y		1 0 0		1 0 -y		1 0 y		1 0 -y		1 xy 0
0 1 0		0 1 0		0 1 0		0 1 0	=	0 1 0		0 1 0	=	0 1 0
0 -x 1		0 0 1		0 x 1		0 0 1		0 -x 1		0 x 1		0 0 1

Two Open Problems in the #NC1 Area

• But this trick crucially depends on the existence of additive inverses in ℤ. If
we look at k × k matrices over 𝗡, we can define the class #BWBP of functions
defined by poly-length products (or by counting paths through a bounded
width branching program). It is easy to see that #BWBP ⊆ #NC1, but the
opposite inclusion is open. (There seems to no reason it should be true, but
we have no lower bound techniques yet against #BWBP.)

• By Chinese remaindering, we can implement iterated multiplication in ℤ3×3 by
iterated multiplications in parallel over ℤp3×3 for poly-many primes of O(log n)
bits. This costs us NC1 (actually TC0) for the translation in and out of CRR.
We can repeat the process until we have multiplication over matrices with
constant modulus, which is in NC1. So we can compute GapNC1 with
boolean circuits of fan-in two and depth O(log n log*n), or majority circuits of
depth O(log*n). This is very very close to collapsing this class to boolean NC1.

Arithmetic Versions of AC0

• #AC0 is defined in terms of unbounded fan-in + and × gates, with 0 and 1
inputs. GapAC0 actually poses a problem in definition, as it is not obvious
that the two definitions we have used coincide. From the circuit standpoint
we would allow -1 constant gates, but starting from the GapP definition we
would look at the difference of two #AC0 functions. Perhaps confusingly, the
class with -1 constants is called “GapAC0” and the other “DiffAC0”. The good
news is that the two classes coincide. (At all the higher classes we had the
parity function, the sum of the inputs mod 2, available in the # class.)

• The construction of a DiffAC0 pair for an arbitrary GapAC0 is recursive -- for
each gate g we construct two #AC0 functions P and N such that g = P - N.
This is easy for constants, and for a gate that is the sum of other gates gi
each with its own pair of functions Pi and Ni. The difficulty is to compute P
and N such that P - N is the product of the functions Pi - Ni.

Simulating a Product Gate in DiffAC0

• The product of (Pi - Ni) has 2n terms -- for every set L ⊆ {1,...,n} and its
complement R, we have (-1)|L|∏LPi∏RNi which we’ll call (-1)j f(L, R).

• The trick is to express this sum as an integer linear combination of n+1
different products, Xk = ∏n (Pi + kNi) for each k from 0 through n. Each of
these products can be computed in #AC0 assuming that each Pi and Ni can.

• We compute each Xk as a sum of the products f(L, R), define variables ck for k
from 0 through n, and equate ∑k ck Xk to our product above. Collecting the
sets of terms for each |L|, we wind up with the set of linear equations ∑k kjck =
(-1)j, n+1 equations in the n+1 unknowns. The matrix of this set of equations
turns out to be a Vandemonde matrix and can be solved to give us the
coefficients ck = (-1)k+1k(n+2 choose k+1).

TC0 in Terms of Arithmetic Circuits

• As Marco told us last week, there are several ways to take a function class
like #P and make a language class from it. For example, NP is the set of
languages L such that there is a #P function f such that f(x) > 0 iff x ∈ L. UP is
the set of languages L such that the characteristic function χL is in #P.

• C=P is the set of L such that for some f in GapP, f(x) = 0 iff x ∈ L. PP is the
corresponding set for f(x) > 0. It turns out that the classes C=AC0 and PAC0
are both equal to the already-defined boolean circuit class TC0.

• Since iterated addition and iterated multiplication are in TC0, even under log-
time uniformity, a TC0 circuit can just evaluate a GapAC0 function and make
the proper comparison at the end.

• Evaluating a TC0 circuit with a GapAC0 function is a bit harder.

Simulating TC0 With a GapAC0 Function

• By a bit of hacking, we can show how to convert any TC0 circuit into one that
has only exact threshold gates, that have m inputs and return 1 iff the inputs
are exactly evenly split between 0 and 1. We also want the circuit to be
levelled, so that every path from a given gate to an input has the same length.

• We let μ be the product ∏j ≠ m/2 (m/2 - j). For each gate g at level t of the exact
threshold circuit, we’ll construct a GapAC0 function that is 0 if g evaluates to 0,
and μt if g evaluates to 1.

• Suppose that f1,...,fn are each GapAC0 functions that are equal to μt or 0 as the
gates g1,...,gn are 1 or 0, and that g is the exact threshold of the gi’s. The
product ∏j ≠ m/2 ((∑i fi) - jμt) is clearly in GapAC0, and evaluates to 0 unless
exactly half the fi’s are nonzero. In this case the product is μt+1.

Lower Bounds Against GapAC0

• Let f(n) be the familiar Fibonacci function. Given a string of boolean inputs x
= x1,...,xn we can let F(x) = f(∑ixi). This is a natural-number function ranging
from 0 to f(n).

• If h is any GapAC0 function, look at the boolean function b given by the low-
order bit of h. Suppose we take the circuit for h and replace each + gate
with a boolean ⊕ gate, and each × gate with a boolean ∧ gate. We now have
an AC0[2] circuit that computes b. It’s fairly easy to see that a boolean
function is in AC0[2] if and only if it is the low-order bit of a GapAC0 function.

• Smolensky’s Theorem says that the mod-3 function cannot be computed by
an AC0[2] circuit. Thus our F function above cannot possibly be in GapAC0.

• There is a hope (not yet realized) that such lower bounds could help in
proving lower bounds against TC0. They do separate GapAC0 from GapNC1.

