Quasipolynomial Size Circuit Classes

David A. Mix Barrington
Department of Computer Science
University of Massachusetts

Ambherst, MA 01003, U.S.A.

Abstract

Circuit complezity theory has tried to understand
which problems can be solved by “small” circuits of
constant depth. Normally “small” has meant “poly-

nomial in the input size”, but a number of re-
. . . . o(1)
cent results have dealt with circuits of size 21°8™

or quasipolynomial size. Here we (1) summarize
the reasons for thinking about the new complezity
classes so introduced, (2) survey these results and
give an overview of these classes, and (3) show that
the Barrington-Immerman-Straubing uniformity def-
inition for polynomial-size classes can easily be ez-
tended to quasipolynomial size as well, with most of
the key results remaining true in the uniform setting.

1 Introduction

What determines the computational power of a net-
work of computing elements? We need to know what
the individual elements can do, the purely combinato-
rial properties of the network (such as its size and
depth), and something about the way the network
is specified (how “uniform” it is). Suppose we fix
the combinatorial parameters, so that our networks
are unbounded fan-in boolean circuits whose size is
polynomial in the input length and whose depth is
constant, and vary the other two factors. For every
choice of base functions and every uniformity condi-
tion, we get a complexity class — the set of problems
which can be solved by constant-depth poly-size cir-
cuits whose gates compute those functions and which
meet the uniformity condition.

Over the past decade we have developed a fairly
complete picture of these complexity classes for a
wide variety of simple gate functions. If gates can
only compute the AND and OR functions, we get
the class ACC [FSS84]. If gates can also test the
sum of their inputs for divisibility by a constant g,
we get the class ACC®[g]. The union over all g of

ACCq] is called ACC® or ACC [Ba89, MT89]. If
the gates can compute the majority function, we get
the class TC° [PS88, HMPST87], and if they can
compute membership in a fixed arbitrary regular lan-
guage, we get the class NC!. We know a num-
ber of containment relations among such classes (e.g.,
AC® C ACC® C TC® C NC?), but we have not got-
ten very far in separating those we think are different
(e.g., we think ACC® # TCP° but can’t prove even
ACCV[6] # NP).

One reason for looking at these particular circuit
classes is their robustness. It looks like they capture
something inherent about computing with these par-
ticular operations, because so many naturally defined
classes in other models of computation tend to co-
incide with one of them. For example, ACY is the
alternating log-time hierarchy (defined in terms of
random-access Turing machines) [Si83] and also the
first-order definable languages in Immerman’s frame-
work [Im87]. NC*! can be defined as a constant-depth
circuit class above, or more conventionally [Co85] in
terms of log-depth binary AND/OR circuits [Ba89]
(or, for that matter, constant-width branching pro-
grams [Ba89], constant-width circuits [Ba89], or non-
uniform automata [BT88]).

The relationship between circuit classes with gates
for certain operations and first-order logic with quan-
tifiers for those operations is quite general, and
continues to hold when uniformity is taken into
account [BIS90]. Natural “uniformity conditions”
(which say how easy it must be to specify the circuits
in a family) correspond to natural conditions on the
atomic formulae of a first-order sentence. In partic-
ular, log-time uniform circuits of constant depth and
polynomial size (with a particular set of gate types)
can recognize exactly those languages specified by first
order sentences with atomic formulae for equality, or-
der, and binary representation (and quantifiers for
functions computable by the gates).

Another reason to study constant-depth, poly-size
circuit classes (the original reason, at least for the
American literature following [FSS84]), is their con-
nection with Turing machine classes above P (see,
e.g., [BDG88] for an overview of these classes). Lower
bounds on the size of circuits of a certain type (e.g.,
constant-depth AND/OR) to compute a certain func-
tion (e.g., exclusive OR) lead to the construction of
an oracle separating certain complexity classes (in
this example, showing ®P#, and hence PSPACE*,
is not contained in PH* [Ya85, Ha88]). But this
very general connection does not use the “poly-size”
part of the definition of our circuit classes. In fact,
the theorem that the exclusive OR function is not
in AC® [FSS84, Aj83] had no such consequences in
structural complexity. By examining the construc-
tion [FSS84], it is easy to see why. If, for exam-
ple, ®P4 C PH* for some oracle A, then a poly-
time constant-alternations alternating oracle Turing



machine can determine whether the number of strings
of length n in A is odd or even. We can view the ATM
computation as a constant-depth circuit, whose size is
exponential in the (polynomial) running time of the
ATM, and whose inputs are the A-membership ques-
tions for the 2™ strings of length n. The size of this
circuit is thus not polynomial in its number of inputs,
but quasipolynomial: 2103NO(1), with N = 2™, The key
step in constructing the desired oracle is knowing that
no such constant-depth, quasipolynomial size circuit
can actually compute the parity of its inputs.

This suggests an alternate series of circuit complex-
ity classes. For each of our gate types, consider the
languages recognizable by circuit families of constant
depth and quasipolynomial size. We will denote each
new class by appending a small ¢ to the corresponding
poly-size class, so that ¢ AC?, for example, is constant-
depth quasipolynomial size AND/OR circuits. The
natural containments go through unchanged, so we
have, for example, gAC? C gACC® C ¢TC° C ¢NC*
(with the multiple definitions of the last class still co-
inciding). Furthermore, the few known separations
of the poly-size classes are known to hold with ex-
ponential lower bounds. So we know that qAC?® is
strictly contained in ¢ ACC°[2] [Ya85, Ha88], that the
gACP° hierarchy is infinite [Ha88], that gACC?[2] is
strictly contained in ¢7C° [Ra87], and that the classes
gACCP[p] are incomparable for prime p [Sm87]. (The
few known separations of subclasses of “pure ACC?”,
circuits with only modular counting gates, also hold
with exponential size bounds [BST90].)

Recently a series of important upper bound results
has lent further significance to these new classes. First
Allender [Al89, AH90] noticed that the argument of
Toda [To91], showing PH C PPP can be adapted
to show gAC® C ¢TCY (where the subscript denotes
depth-3 threshold circuits). The analogous contain-
ment of AC® in TCY is not known to hold. This re-
sult has been steadily extended on both sides. On
the left, Yao [Ya90] showed that gACC? is also con-
tained in ¢TCY, giving the first nonobvious upper
bound on the computing power of even ACC®. On
the right, Beigel and Tarui [BT91] and Green, Kdbler
and Toran [GKT92], have given sharper characteriza-
tions of the type of ¢T'CY circuits needed to simulate
gACCP. An important notion in this work is that of
a polynomial over the integers in the n boolean input
variables, with poly-log degree and quasipolynomial
coefficients. A variety of natural complexity classes
can be defined in terms of such polynomials — we
give an overview of such classes in section 2.

A natural question about the quasipolynomial size
classes is whether they are as robust as their poly-
nomial counterparts. In section 3 we show that
the Barrington-Immerman-Straubing uniformity def-
inition still holds true for the new classes. In par-
ticular, if we augment the first-order logic to allow
suitably restricted second-order operators, we get log-
ically defined complexity classes which correspond to
uniform versions of the quasipolynomial size circuit

classes. The appropriate notion of uniformity is that
queries about the circuits must be answerable in de-
terministic poly-log (rather than logarithmic) time. In
section 4 we show that the simulations of Beigel and
Tarui and of Green, Koébler, and Toran are uniform
simulations in this view.

2 An Overview of the New Classes

We may begin with some simple observations about
the quasipolynomial analogs of some larger complex-
ity classes. If we look at unrestricted binary circuits
of quasipolynomial size we get ¢P, an analog of poly-
nomial size or P. This is easily seen to be equal to

DTIME(21°gO(1) ™) (quasipolynomial time). The ana-
logue of NC, ¢ NC, has binary circuits of quasipolyno-
mial size and poly-log depth, and is easily seen to be
equal to DSPACE(logO(l)n) (poly-log space). I ar-
gue that this class ¢ N C also forms the analog of NC?
and of all classes in between, such as DSPACE(logn)
(logspace). To see this, we can look at either of two
characterizations of NC1, poly-size boolean formu-
lae or poly-size constant-width branching programs,
and replace “polynomial” by “quasipolynomial”. This
class is closed under conversion from a circuit to a for-
mula, and contains all the constant-depth quasipoly-
nomial size classes which we will consider.

The appropriate notion of “completeness” to con-
sider possible collapses of these classes is constant
depth, quasipolynomial size Turing reduction. As
pointed out in [AH90], if NC?! is contained in, for
example, ¢TC?, then all of gNC collapses to qTC®.
This is because a problem complete for NC! under
ordinary poly-size reductions (such as iterated multi-
plication in a non-solvable group) is complete for g NC
under these new reductions. Similarly, the majority
problem (on n inputs) is complete for ¢7C°, so that
gTC® = gACC? if majority is in ¢ACCV.

Let us say that a class within g NC is “large” if it
contains (ordinary) ACC°[6]. Since ACC'[6] = NP
is consistent with everything we know, virtually any
lower bound for a large class would be a major break-
through. Conversely, let us call a class “small” if we
know that it does not contain N P. By the standard
exponential lower bounds mentioned above, we know
that g AC° and ¢ ACCP[p] for prime p are small. Turn-
ing to threshold circuits, ¢7'CY is small [HMPST87],
as is the subclass of gTCY where the bottom thresh-
old gates are ANDs of at most clog n inputs, ¢ < 1/2
being a constant [HG90].

The class ¢TC? is obviously large, but because of
the sequence of upper bounds described above we
know that various natural subclasses of it are also
large. To define some of these classes, it is convenient
to consider circuits where the bottom level consists of
AND gates, each connected to at most log?Mn in-
puts. If ¢C is any quasipolynomial size circuit com-
plexity class, let gCT denote the languages recognized
by families of circuits, each a circuit from ¢C aug-
mented with such a level of AND gates. This nota-
tion is due to Green, Kobler, and Tordn [GKT92], in-
spired by a suggestion of Beigel, Reingold, and Spiel-



man [BRS91]. The motivation for it is as follows. If ¢C
contains only symmetric functions (e.g., ¢C = SYM,
the class of all symmetric functions on quasipolyno-
mially many inputs), then we can view a qC™* cir-
cuit as evaluating an integer polynomial of poly-log
degree in the n boolean input variables, and applying
some lookup function to the result. The coefficients of
the polynomial must also be quasipolynomial (poly-
log bits long), as the size of the resulting ¢C'* circuit
is the sum of all the coefficients. The advantage of
viewing the circuit in this way is that a number of
useful combinatorial operations on such circuits cor-
respond to natural algebraic operations on the poly-
nomials. Beigel and Tarui [BT91] call gCT the set of
functions that can be “simulated” by functions in ¢C.
The important thing to note is that this “simulation”
relation is transitive — equivalently, (¢qCT)™ = ¢qC™.

Yao [Ya90] and Beigel and Tarui [BT91] used this

framework to show that SYM ™, and hence (¢7C9)7,
is large. This was improved by Green, Kobler, and
Tordn [GKT92], who showed that without loss of gen-
erality the arbitrary symmetric function can be re-
placed by the single function Midbit, which adds up
its boolean inputs as integers and returns the mid-
dle bit of the binary representation of the sum. Thus
they show that Midbit™ is large (specifically, Midbit™
and thus all these other classes contain g ACC®). This
is probably a significant improvement over the naive
gACC® C ¢qTCY, and suggests trying to show some
natural function to be outside of AC°[6], say, by show-

ing it to be outside of MidbitT. A natural candidate
function is the “majority of majorities”: a depth-2 cir-
cuit of MAJORITY gates of fan-in 4/n. As observed
in [BT91], if this function (and hence (TC3)*) is in
SYM™ then SYM™ = ¢T'C°. (The analogous result

holds for Midbit™ by exactly the same simple argu-
ment.)

All three proofs [Ya90, BT91, GKT92] proceed in

the same way. The g ACC? circuit is first put in a nor-
mal form where all modular gates have prime modulus
and all gates on a given level compute the same func-
tion. The AND gates are then converted into modular
counting gates as in [A189, AH90]: using the method of
Valiant and Vaziran [VV86], quasipolynomially many
MOD circuits are constructed, each based on one

choice of the value of poly-log many “random” bits,
such that most of these gates give the correct answer
for the AND gate. In fact, as described in [BT91],
the same random bits can be used for all the AND
gates in the circuit in a way that most choices of these
bits give correct answers for all these AND gates. The
simulation of the gACC?® circuit thus at this point
has a MAJORITY gate at the top, and a constant
number of levels of MOD, gates and MOD;’ subcir-
cuits (of course, not all for the same prime). By using
a simple distributive property of poly-log ANDs over
MOD,[AH90, BT91], the poly-log AND gates can all
be pushed to the bottom to give a MAJORITY of
(gCC%)* circuits. (CCY or “pure ACC” [Ya90] is sub-
class of ACC? with only modular counting gates.)

It remains then to show that a symmetric gate or a
Midbit gate can “swallow” a level of M OD), gates, i.e.,
that a symmetric (Midbit) function of quasipolynomi-
ally many MOD, gates is in SYM ™1 (Midbit™). This
is done using the now-famous “Toda polynomials”, the
first version of which was introduced by Toda [To91].
In the improved version of Beigel and Tarui [BT91],
the ¢’th Toda polynomial P;(z) is a univariate poly-
nomial of degree 2¢t — 1 which has the property that
Py(z) is congruent to 0 modulo z* and congruent to 1
modulo (z —1)*. As a consequence, if N is any integer
and p is a prime, the residue of P;(N) modulo p* is
equal to that of N modulo p.

Suppose we must evaluate a symmetric function of
s MOD, gates. We (1) choose ¢ so that p’ is greater
than s, (2) find for each M OD, gate a poly-log degree
integer polynomial in the inputs whose residue mod-
ulo p is the value of the gate, (3) apply P; to each
of these polynomials (getting another poly-log degree
polynomial as t is poly-log), (4) add the results (still
poly-log degree), and (5) take the residue of this grand
sum modulo pt. The result is exactly the number of
MOD, gates which have value one, and determines
the output of the original symmetric function. In the
SYM™ case we are now essentially done, as the com-
position of the M O D). function and the original sym-
metric function is another symmetric function. For
the Midbit™ case, there is some additional work to do
to show that we can use this grand sum to construct
another polynomial whose middle bit gives the mid-
dle bit of the sum of the original M OD, gates. We
will deal with the solution of [GKT92] in more detail
below.

We can put the recent results of Barrington, Beigel,
and Rudich [BBR92] in this context as well. It is
natural to ask for what classes C' of symmetric func-
tions the class CT can be shown to be small. MAJT
and MOD;’ for prime p are small, but what about

MODZ$? (In general, the case of MOD{ is general
enough to extend to MOD;, for non prime-power m.)
If the MODg function is defined (as usual) to return
zero if the sum of its inputs is divisible by six and one
otherwise, then MOD{ is in fact small (by [BBR92],
it does not contain ~MODg or MODs5). But consider
more “M O Dg functions” — the class RM O Dg of func-
tions whose value depends only on the sum of their
inputs modulo six (i.e., an arbitrary lookup function is
applied to the residue of the sum). Whether RM O D/
is small is an open problem in [BBR92] — they conjec-
ture that it does not contain the OR function, which
would clearly make it small.

3 A Robust Uniformity Definition

How is one to define a “uniform” circuit of
quasipolynomial size? For polynomial size and con-
stant depth, a robust definition was provided by
Barrington, Immerman, and Straubing[BIS90]. De-
terministic log-time uniformity, the most restrictive
reasonable condition in the family first proposed by
Ruzzo [Ru81], is shown there to coincide with an



apparently stronger notion arising from Immerman’s
work.

Informally, let us say that a circuit family is “logi-
cally uniform” if the circuit for each input size arises
from the straightforward evaluation of a single log-
ical formula. In the logical system, variables range
over places in the input, atomic formulas allow access
to the input and basic operations on the place num-
bers, and quantifiers perform the operations of the
various gate types. As an example, consider the for-
mula “JzVy[no(z) Az < y]”, which says that there is
a place in the input before all other places and which
contains a zero (i.e., the input is in the language 0X*).
A logically uniform circuit for this formula would have
an OR gate at the top with fan-in n (for the n pos-
sible values of z). Each child of this OR gate would
be an AND gate, with fan-in n for the possible val-
ues of 4. The n? inputs to these n AND gates would
be constant-size circuits evaluating the quantifier-free
subformula in brackets for each pair of values for z
and y (they would each contain an input gate to eval-
uate mo(z), which means “input number z is a zero”).
The central result of [BIS90] is that any log-time uni-
form circuit, with any reasonable set of gate types,
has a logically uniform “normal form”. That is, it
is equivalent to a first-order formula with quantifiers
corresponding to the gate types used. Our goal here
is to show a similar normal form for uniform constant
depth, quasipolynomial size circuits.

To begin we must generalize the Ruzzo-type uni-
formity definition to the new setting. Deterministic
log-time is no longer “reasonable” to answer queries
about the circuit, as the gate numbers of the circuit
are now poly-log many bits long. But if we allow deter-
ministic poly-log time, we get a sensible notion. The
following parallels the definitions of [BIS90]:

Definition: The direct connection language of a
circuit is the set of tuples (g,t, h,y) where g and h are
gate numbers, ¢ is the gate type of g, either h is a child
of g or g is an input gate for input variable z, and y
is an arbitrary string of n bits. (The purpose of y is to
make the size of the query comparable to n — y must
be arbitrary as the query must be answered without
looking at all of it.) A circuit is DPLT-uniform if its

direct connection language is in DTIME(logO(l) n).
The notion of a quantifier corresponding to a gen-
eral boolean function is introduced in [BIS90]. Here
we will restrict our gates to compute boolean func-
tions of n* boolean inputs for some k. An impor-
tant technical requirement (necessary to allow us to
assume that there are that many inputs, among other
things) is that it is possible to pad the domain of
the function with “identity elements” without affect-
ing its output. For example, an AND operation may
be padded with ones, an OR or XOR with zeros, and
a MAJORITY with zero-one pairs. If f is such a
function, @y is a quantifier which binds k variables
(each ranging from 1 to n) such that the truth value
of (Qfz1...25)d(21,...,2x) is the value of f applied
to the n* bits given by letting the z;’s range from 1
to n. (In case f is not commutative, we must specify
that f is applied to these bits in lexicographic order.

There is no need for f to be commutative or even asso-
ciative — Bédard, Lemieux, and McKenzie [BLM90]
apply the framework of [BIS90] without difficulty to
arbitrary binary algebras with identity.)

Theorem: [BIS90] Let F be a set of suitable gate
functions including AND and OR. Then (1) alanguage
is computable by a family of constant depth, polyno-
mial size circuits, whose gates compute a finite set of
functions from F, and whose direct connection lan-
guage is in DTIM E(log n), iff (2) the language is the
set of strings satisfying some particular first-order sen-
tence with quantifiers for F. The first-order sentence
may have boolean connectives and atomic formulas of
the form z < y, z = y, BIT(z,y), 7o(z), and m1(z),
where z and y are variables representing places in the
input.O

The atomic formula BIT(z,y) requires some expla-
nation. It means “the z’th bit in the binary expansion
of y is one”, and gives the logical system the same ca-
pacity to examine a number bit-by-bit as any Turing
machine has. If the BIT predicate is removed, the log-
ical system can only describe regular languages unless
the quantifiers themselves are powerful enough to do
more [BIS90]. Lindell [Li92] examines why this BIT
predicate is needed and what other predicates might
do as well.

How, then, to augment the logical system to repre-
sent larger circuits? We do this by adding a restricted
form of second-order quantifier. Such quantifiers will
bind second-order variables which range over relations
on the set {1,...,logn}. For example, if R is a 3-
ary variable and z, y, and 2z are ordinary variables,
R(z,y,2) is a valid boolean term of the language as
long as 1 < z,y, z < logn (equivalently, we could make
R(z,y, z) false if any variable exceeds logn). If f is

a boolean function of 218" inputs, with the padding
property mentioned above, then Q; is a second-order

quantifier such that (Q;R)¢(R) has the truth value

given by applying f to the 218" ™ bits obtained by eval-
uating @(R) for all possible R. (Here ¢ must also con-
tain some ordinary variables, whether bound or free,
because R cannot exist syntactically without some.)
A second-order sentence then has a truth value which
depends on the input string, just as a first-order sen-
tence does.

Theorem: Let F be a set of suitable gate func-
tions as above, containing AND and OR. Then (1)
a language is computable by a family of constant
depth, quasipolynomial size DP LT-uniform circuits
with gates using a finite set of functions from F iff (2)
the language is the set of strings satisfying a particular
restricted second-order sentence, using quantifiers for
functions in F and connectives and atomic predicates
as above.

Proof: That (2) implies (1) is easy. We must show
that a logically uniform circuit can be given gate num-
bers so that direct connection language queries are
easy to compute. Just as in [BIS90], we let the num-
bers of the gates corresponding to quantifiers be the
concatenation of strings representing the values of the
currently bound variables. These strings are poly-log
many bits long because each variable can be specified



with poly-log many bits. Whether one such gate is a
child of another, or what type a gate is, can be read off
of these strings in poly-log time. For the gates repre-
senting the quantifier-free part of the formula, the gate
number is a prefix representing all the bound variables
followed by a constant-length section. The answer to
a query about such a node can be obtained by evalu-
ating the quantifier-free section for the chosen values
of the bound variables. These values are readily avail-
able from the gate number, and each of the atomic
predicates can be evaluated in poly-log time.

To show that (1) implies (2), we first show that any
predicate computable in deterministic poly-log time
can be expressed by a restricted second-order sentence.
This is easier than the analogous result for log-time
in [BIS90], because of the more generous closure prop-
erties of the poly-log functions. If the time bound to

compute the predicate is logk n, we use a single second-

order existential quantifier to guess an array of long n
bits, and use first-order quantifiers, connectives, and
atomic formulas to express the statement that this ar-
ray describes an accepting computation of the Turing
machine on the given input.

Now that we know that the parent-child relation
on gate numbers and the type of gates are each ex-
pressible by restricted second-order formulae, we in-
ductively define the value of a gate. The value of
an f-gate g is given by (Q;R)¢(R), where R ranges
over all possible gate numbers and ¢(R) is the value
of gate number R if R is a child of g and an iden-
tity value otherwise. We can express the value of a
gate with our system by defining formulae expressing
statements like “g is an accepting f-gate which is at
most d levels above the input”. The general inductive
definition allows us to express this in terms of analo-
gous statements for gates at most d — 1 levels above
the input. We can express membership in the lan-
guage by expressing the value of the output gate of
the circuit.O.

This theorem shows that the logical and Ruzzo-like
notions of uniformity coincide for the circuit classes
with arbitrary constant depth and a fixed set of gate
types. In the next section, we will want to speak
of uniform versions of results where depth is fixed.
For example, what is a uniform version of SYM ™ or
Midbit™? We will define these in terms of logical for-
mulae obeying particular syntactic restrictions corre-
sponding to the combinatorial restrictions on the cir-
cuits.

Definition: A SYM™ sentence is a restricted
second-order formula derived from a formula as fol-
lows. For a fixed integer k, let » = log*n and let L
be a lookup function, a boolean function with domain
{1,...,n"}. Let S be the symmetric boolean function
on n" bits corresponding to L, so that S(w) = L(|w|)
where |w| is the number of ones in the binary string

w. A SYM™ sentence is any sentence of the form
(@sF)(V)[(E <) — (8(f,9) Azyg(iy)]

where ¢ does not access the input (has no mg or my
predicates). (Since the first-order quantifier here is ac-

tually implementing an AND of poly-log many terms,
we will later write it as such. It should be clear that
there is a purely syntactic translation back to the
quantifier form.) A uniform SYM™ sentence is one
in which L(n) can be computed in poly-log time from
the binary representation of » and ¢(f,7) can be com-
puted in poly-log time from those of f and 7. A uni-
form Midbit™ sentence is a uniform SYM™ sentence
where L is the middle-bit function.

The most common way of defining a SYM™ func-
tion is to give an integer polynomial of poly-log de-
gree with quasipolynomial coefficients. If we have a
uniform such polynomial, e.g.,

;mn): Z CD/\flii

De(gnr) i€D

R(:lll, e

we can easily turn a symmetric function based on it
into a uniform SYM ™ sentence, as follows. The quan-
tifier Qs depends on the chosen lookup function L.
It will bind a relation which we will interpret as a
pair consisting of f (of rlogn bits) and z (of s bits,
where s is a power of log n such that 2° exceeds all the
¢p’s). The formula ¢(f, z,¢) must say that (1) fis a
increasing function from some prefix of {1,...,7} to
{1,...,n}, so that it uniquely represents a subset D,
and (2) z < ¢p, where f represents D. The sum over

all {f, z) of

T

/\(¢(f: z,1) A fﬂf(i))

=1

is then exactly the value of R(z1,...,zy).

4 Uniformity of Upper Bounds

We now turn to previous results concerning
quasipolynomial size circuits and consider their uni-
form versions. We begin with an important result
in which uniformity is inherent, that of Allender and
Gore [AG91]. They prove that the permanent function
cannot be computed in (log-time) uniform ACC®, and
thus that uniform ACC? is properly contained in the
class PP (unbounded probabilistic polynomial time).
No similar bound is known for non-uniform, or even
much less uniform, ACCP®. This is in constrast to
all the circuit lower bounds mentioned earlier, where
the methods were entirely combinatorial and the same
bounds are known for both uniform and non-uniform
circuits. In a later version of this work [AG92], they
also prove that the permanent, and hence PP, is not
contained within uniform ¢ ACC?, using the same no-
tion of poly-log time uniformity as we use here. This
later version also shows, independently of this paper,
that the simulation of Beigel and Tarui [BT91] is uni-
form according to this notion.

In [AH90], Allender and Hertrampf examine the
uniformity of Allender’s collapse of the ¢T'C° depth
hierarchy and related depth collapses (such as for
gACCP[p] for prime p). For simplicity, they chose a
weaker uniformity condition, that direct connection
language queries be answerable in poly-log space or



gNC. However, they recognized the possibility of car-
rying through their analysis with a uniformity notion
like that of [BIS90], and much of what we will do in
this section draws directly on their work.

Here we will carry out a uniform version of the sim-
ulation [GKT92] of a uniform g ACC® circuit family by

a uniform Midbit* sentence. This uses all the tech-
niques of the earlier simulation [BT91] by a SYM™
sentence, but will be a bit simpler notationally. We
begin by applying the result of the previous section
to make the ¢gACC® family logically uniform, with
prime moduli on the gates (this involves a few syn-
tactic tricks, such as simulating a quantifier for the
MOD,. function using M O D,, quantifiers — these are
straightforward and we omit them). As we outlined
above, we now need uniform versions of the “Valiant-
Vazirani trick” and the “Toda trick”.

For the first, we put a MAJORITY quantifier at
the front of the formula, binding a variable R which
ranges over all choices of the random bits we need at
each gate. Then a second—order 3 quantifier 35¢(5),
for example, gets converted into:

polylog

@Y4TR)( \/ )QMOP»S)¢/(R, S,1)

=1

, where ¢ is closely related to ¢. More specifically,
the same majority quanitifier at the front of the whole
formula binds a common random bit string R which
applies to all the quantifiers simulated. By choosing
R long enough (but still poly-log many bits) we can
ensure that most R work for all the quanitifiers, and
thus that this step of the simulation is correct. Getting
rid of the poly-log-wide ORs requires an example of
the distributive law addition and multiplication, just
as described in [AH90]. We can do this with any two
operations which act like multiplication (e.g., AND, to
which the ORs may easily be converted) and addition
(e.g., MOD),, for prime p). Consider a formula of the

form
T
11> 76 s),
i=1 S
where S ranges over k-ary relations on {1,...,logn}

and r = logl n. Let the relation 7 range over functions
from {1,...,7} to k-ary relations. The formula now
has an equivalent form

> I 76 1)

T =1

By successive steps of this form we can move all the
small ANDs and ORs to the end of the formula.

We now have a formula with a MAJORITY quan-
tifier at the front, a sequence of M O D, quantifiers for
various primes p, and a poly-log restricted V at the
end. By adding dummy variables, the MAJORITY
quantifier may be made into a Midbit quantifier. The
next step is to merge the M OD, quantifiers one by
one into the Midbit symmetric quantifier at the front

using a Toda polynomial. To do this uniformly, we
must show (1) the coeflicients of a Toda polynomial
can be calculated in poly-log time, (2) the composition
of two uniform polynomials is another uniform poly-
nomial, and (3) given a uniform polynomial f whose
residue modulo p' is b, we can make another uniform
polynomial g such that the middle bits of the binary
expansion of g are b.

For (1), we merely look at the explicit formula for
P;(z) given by Beigel and Tarui [BT91]. We need to
multiply two polynomials of degree ¢ each of whose
coeflicients are given in terms of binomial coefficients.
The obvious algorithm to evaluate these coefficients
takes time polynomial in ¢, which is poly-log.

For (2), start with an original polynomial

logk n

=Y /\ (6(S,%) Azs(iy)

where S ranges over (logk‘l'1 n)-bit strings interpreted

as functions from {1,...,log"n} to {1,...,n}. We
want to apply another polynomial (in the intended
application, a Toda polynomial) to the integer which
is the output of this one. Let the new polynomial g
be

logl n

> /\ (T, 5) Nyr())-

We pick the version of g where T ranges over functions
from {1,...,log*n} to {1,...,log"*"'n}. Thus T(5)
can be interpreted as a function from {1,...,log* n}
to {1,...,n}. We get

logk n

yriy = J\ (B(T(),9) Aorym),

=1
so that g o f can be written in the proper form as

logl n logk n

2N N @) ANTG) D) A erie)

For (3), the arithmetic done in [GKT92] to accom-
plish this is very simple. In addition to evaluating the
Toda polynomials themselves, we need to raise some
primes to poly-log powers and perform integer divi-
sions and multiplications on the results. All of this is
easily accomplished in poly-log time, and the resulting
polynomials remain of poly-log degree with quasipoly-
nomial coeflicients.
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