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DIRECTIONS:

e Answer the problems on the exam pages.

e There are six problems on pages 2-7, some with multiple
parts, for 120 total points. The scale is A=105, B =
87, C=69, D = 51, F = 33.

e If you need extra space use the back of a page.
e No books, notes, calculators, or collaboration.

e In case of a numerical answer, an arithmetic expression
like “217 — 4” need not be reduced to a single integer.
But there may be times when you need to compare
numerical answers to one another, which would mean
computing them or at least estimating them.

/15
/20
/25
/20
/20
/20
Total /120

O | W N~




Question 1 (15): Briefly identify and distinguish the following terms or concepts (3 points each):

e (a) a tautology and a contradiction in boolean logic

A tautology is a statement that is always true, no matter the values of the
inputs. A contradiction is a statement that is always false.

e (b) an onto function and a one-to-one function
A function is onto if for every element of the domain, there is at least one
element of the domain mapping to it. A function is one-to-one if no two
elements of the domain map to the same element of the codomain.

e (c) the probability of an event and the number of ways an event could occur
The probability of an event is a number, in the range from 0 through 1. If
there are a set of equally likely atomic events, the probability of an event is
the number of atomic events in which the event occurs, divided by the total
number of atomic events.

e (d) a directed graph and an undirected graph in graph theory
Both are sets of nodes and edges, but a directed graph has directed edges,
where each edge is from one node to some node, while an undirected graph
has undirected edges, where each edge is between two nodes or from one node
to itself.

e (e) a walk and a path in an undirected graph

A walk in a graph is an alternating sequence of nodes and edges, where each
edge is from the vertex before it to the vertex after it. A path is a walk in
which no node is used more than once.



Question 2 (20): Seven women from New England state universities are about to compete in
a cross-country footrace. They will finish in order from 1 through 7 — there are no ties.
The competitors, with their states, are Abigail (MA), Brittany (CT), Carmen (RI), Debra
(MA), Enid (MA), Francine (CT), and Gretchen (VT). We define a function f from the set
R={A,B,C,D,E,F,G} to theset P ={1,2,3,4,5,6, 7}, with the rule being that f(X) =n

if competitor X finishes in position n.

e (a, 5) In how many ways could the race come out? (For example, one of the ways you
are counting is “f(A4) =3, f(B) =7, f(C) =2, f(D) =4, f(E) =1, f(F) = 6, and
f(G)=5".

There are P(7,7) = 7! = 5040 ways to do this.

e (b, 5) In how many of those possible outcomes does Abigail finish third, and Enid finish
either fourth or fifth, and Francine finish first?

First assume that f(A) =3 and f(F) = 1. If Enid finishes fourth, there are 4!
ways to place the four unassigned competitors in the four remaining places.
If Enid finishes fifth, there are 4! way for those four unassigned people to
go in those remaining places. By the Sum Rule (since Enid cannot finish in
both fourth and fifth), we have 4! + 4! = 48 ways to do this.

e (c, b) If each possible order of finish were equally likely, what is the the probability that
the three Massachusetts competitors would be the top three finishers? (For example,
this would happen if the order were “D, A, E, G, F, B, C”.)

Out of the 5040 finishes, this happen in 3!4! = 144 possible ways, because
the three Massachusetts people could finish in any order among their three
positions, and the other four could finish in any order among their four
positions. So the probability would be 144/5040 = 1/35.

e (d, 5) Let’s consider a “team result” for this race where we list the states of each finisher
rather than their names. (For example, the team result for the race result example in
part (c) would be “MA, MA, MA, VT, CT, CT, RI”. How many different team results
are possible for this race?

This the number of anagrams of the word MMMV CCR, which we had two
ways to computer in the text and lecture. We could find the C(7,3) ways to
place the M, among the seven places, then the C(4,2) ways to place the two
(C’s among the four remaining places, then C(2,1) ways to place the V among
the two remaining places, then C(1,1) ways to place R in the one remaining
place. This would be C(7,3)C(4,2)C(2,1) =356 -2 = 420. We could also use
the multinomial formula to get 7!/(4!2!111!) = 5040/(6-2-1-1) = 5040/12 = 420.



Question 3 (25): These translations and proof deal with the scenario in Question 2. Remember
that if X finishes before Y, then f(X) < f(Y).

e (a, 5) Write a symbolic statement meaning “Enid placed fourth, and Gretchen finished
before both Debra and Francine.”

The symbolic statement is “(f(E) =4) A (f(G) < f(D)) A (f(G) < f(F))”.
For both (a) and (b), I took off a point for saying, for example, “f(G) < f(D) A f(F)”,
since the A\ operation is not defined on anything except booleans.

e (b, 5) Write a symbolic statement meaning “Some person finished after Enid but before
both Debra and Francine.”

The symbolic statement is “3X € R, (f(E) < f(X)) A (f(X) < f(D)) A (f(X) <
).

e (c, 5) Translate into English: ((f(A) = 1)A(f(C) =3)A(f(G) < f(B))) = (f(G) = 2).
“If Abigail finished first, Carmen finished third, and Gretchen finished before
Brittany, then Gretchen finished second.”

Several people put the “if” statement in the wrong place.
e (d, 10) Explain carefully why if the statements in part (a) and part (b) are both true,

the statement in (c) must also be true. You may quote facts from the lecture and book
if you do so clearly.

Assume that (a) and (b) are true, and that the premise of (c) is also true.
We have f(A) =1, f(C)=3, and f(F)=4. So B, D, F, and G are in positions
2, 5, 6, and 7. We know that person X is after £ and before D and F. X
has to be in position 5, 6, or 7, and D and F' are still among those three
positions, so f(X) = 5. If G were X, we could not have f(G) < f(B), since
all the positions after X have been determined and they don’t include G. So
f(G) has to be 2.

The most common error was to assume that Gretchen could not be the person referred
to in part (b). She can’t be, but you need to use the fact that Gretchen finished before
Brittany to prove that.



Question 4 (20): In this problem we define a function G from positive integers to positive integers,
defined recursively. It uses the rules G(1) =1, G(2) =4, G(3) = 9, and for all n with n > 4,
G(n)=G(n—1)—G(n—2)+G(n—3)+4n — 6. Here we ask you to prove, by induction on
n, that for every positive natural n, G(n) is equal to n?.

e (a, 4) Write the precise boolean statement P(n) that we would like to prove to be true
for all positive integers n.

P(n) says that the sum G(n)

It doesn’t say “for all n, G(n)
a time.

n2.

n?”. The statement P(n) refers to only one number at

e (b, 4) State and prove the base case (or base cases) for your induction.
We need to verify P(1), P(2), and P(3), since the inductive rule is only useful
for P(n) with n > 3. Here G(1) =1 =12, G(2) =4 =22, and G(3) = 9 = 3%, so all
three base cases are correct.
Many people also proved P(4), which was fine, as long as you proved the first three.

e (c, 4) State the inductive hypothesis and inductive goal for your inductive step.

The IH says that for all ¢ with 1 < m — 1, P(i) is true. (In this case we will
only need the statements P(m —1), P(m —2), and P(m —3).) The IG says that
P(m) is true, meaning that G(m) = m?.

The IG could be P(m) or P(m+1), as long as your IH and IG match. But your IH has

to have all three of the statements you need to prove the IG.

e (d, 8) Prove your inductive step, completing the proof.
We need an inductive step for every m with m > 4. We need to evaluate
G(m), and the rule tells us that it is G(m — 1) — G(m — 2) + G(m — 3) + 4m — 6.
By the IH applied to m — 1, m — 2, and m — 3, we get that G(m) is equal to
(m—1)2—(m—2)2+(m—3)3, which is (m?—2m+1)—(m2—4m+4)+(m?—6n+9)+4m—6.
Collecting terms, we have (m?—m?+m?)+(—2m+4m—6m-+4m)+(1—4+9—6) = m>.
This completes the induction and thus the proof.



Question 5 (20): In a particular dice game, you roll four fair six-sided dice, so that each number
comes from the set {1,2,3,4,5,6} with equal probability.

(a, 5) What is the probability that the four numbers you rolled are all different?

There are 6* = 1296 for the four numbers to come up, and there are P(6,4) =
6-5-4-3 = 360 ways for you to get four different numbers from the six
possibilities. The probability is thus 360/1296 = 5/18.

(b, 5) What is the probability that you rolled at least one six?

The denominator is again 6*. There are 5! = 625 ways to not roll any sixes,
so there are 1296 — 625 = 671 ways to throw at least one six. The probability
is thus 671/1296 which is about 52%.

(¢, 5) If we compute a score for your roll of four dice, by adding up four points for each
6, three points for each 5, two points for each 4, and one point for each 3, with no points
for any other numbers, what is the expected value for your score?

Each die has an expected value of 4(1/6) +3(1/6) +2(1/6) +1(1/6) = 10/6. The
expected value of the whole hand is the sum of the expected values of the
four cards, which is 40/6.

(d, 5) A straight is four rolls with consecutive ranks, meaning 1-2-3-4, 2-3-4-5, or 3-4-
5-6, in any order. A three-of-a-kind is a roll where any three of the four numbers are
the same, and the fourth number is different. (An example of a three-of-a-kind would be
a roll of 3-3-5-3.) Are you more likely to roll a straight, or a three-of-a-kind?
Justify your answer.

There are again 6* = 1296 possible rolls, and we need to compute the number
of possible straights and the number of possible three-of-a-kind rolls. There
are 4! = 24 ways to get 1-2-3-4, 24 for 2-3-4-5, and 24 for 3-4-5-6, so there are
3-24 =72 possible straights. To get a three-of-a-kind, we have six choices for
the number that occurs three times, five choices for the number that occurs
once, and four choices for in which position the different number occurs.
There are thus 6 -5-4 = 120 possible three-of-a-kind rolls, more than the
number of straights.

(We could compare the probabilities as 72/1296 and 120/1296, but since we
know that the two denominators are the same, we can compare the proba-
bilities by comparing the numerators.)

In poker dice with five dice, straights also rank above three of a kind — there
we have 360 straights and 1200 three of a kind rolls.



Question 6 (20): Here are ten true/false questions, worth two points each. There is no credit
for blank answers, so you should answer all the questions.

(a) Let D be a set and let P(x) be a predicate defined on elements of D. If we know that
the statement Yz € D, P(x) is true, and y is any element of D, we cannot necessarily
conclude that P(y) is true.

FALSE. The meaning of the statement Vz € D, P(z) is that P(y) is true for
every possible y in D, so we can conclude that P(y) is true.

85% correct.

e (b) The set {#} has no elements.
FALSE. It has one element, which is (). The set () has no elements but we
said “{(0}”, which is the set containing the empty set and nothing else.
33% correct.

e (c) If A is a finite set with m elements, and f is any function from A to A, then if we
think of f as a relation, it contains exactly m pairs.

TRUE. There is exactly one pair (z, f(z)) for every element = of A, no matter
whether f is one-to-one.

67% correct.

e (d) Let R be a symmetric relation on a finite set A, and let G be the directed graph for
R. Then if we know that the edges [z, y] and [y, 2] are both in G, we may conclude that
the edge [z, 2] is also in G.

FALSE. We would know this if R were transitive. But we only know that it
is symmetric, not whether it is transitive.

72% correct.

e (e) If A is a nonempty finite set and R is a binary relation on A that is a partial order,
there must exist some element x in A such that there is no element y such that (z,y) is
in R.

FALSE. Since (z,x) is in R, because R is reflexive, and there is no condition
that = # y, this cannot happen.
54% correct.
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product AB, using integer matrix multiplication, has all 0’s.

FALSE. The correct product has a 2 in the upper right. The matrix BA has
all 0’s.

79% correct.

e (g) If you flip three fair coins, the probability that you get exactly two heads and one
tails is exactly 3/8.

e (f) Let A be the matrix [ 1}, and let B be the matrix [8 ﬂ Then the matrix

TRUE. There are eight possible ways to flip three coins, and we are counting
three of them: HHT, HTH, and THH. We could also compute C(3,2)(1/2)%(1/2)! =
3/8.

69% correct.



e (h) If n is a positive integer, and k is an integer with 0 < k < n, then the numbers
C(n,k) and C(n,n — k) are equal.
TRUE. We learned this identity. C(n,k) is the number of ways to choose a
set of k elements from an n-element set, and C(n,n—k) is the number of ways
to choose n — k elements. But whenever you choose k elements, you are also
choosing which are the n — k elements that you are not picking.

64% correct.

e (i) Players A and B are going to play two matches against one another. Let A; be the

event of A winning the first match and As the event of A winning the second match. If
we know that Prob(A;) = 0.6, Prob(As|A;1) = 0.4, and Prob(As|—A;) = 0.7, then the
probability that each player wins one of the matches is exactly 0.64.
TRUE. The probability of A1NAs is Prob(A;)Prob(As|A;) = 0.24, the probability
of Ay N —As is Prob(A;)(1 — Prob(Az|A1)) = 0.36, the probability of -A; N Ay is
(1 — Prob(Ai1))Prob(Az|—A;) = 0.28 The event of the two players splitting the
matches is the sum of the second and third probabilities, 0.36 + 0.28 = 0.64.

62% correct.

e (j) Suppose you flip fair coins until the first time you get heads, after which you stop.
Then the expected number of coins you flip before stopping is (1/2) + (1/4) + (1/8) +
(1/16) +...=1.

FALSE. We computed this expected value as 2. We could use a sum like this
to get this answer, but what we want is 1(1/2) +2(1/4) +3(1/8) +...=2.
54% correct.



