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DIRECTIONS:

• Answer the problems on the exam pages.

• There are six problems on pages 2-7, some with multiple
parts, for 100 total points. The scale will be A = 88, B
= 72, C = 56, D = 40, F = 24.

• If you need extra space use the back of a page.

• No books, notes, calculators, or collaboration.

• In case of a numerical answer, an arithmetic expression
like “217 − 4” need not be reduced to a single integer.
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Question 1 (15): Briefly explain the meaning of each of these terms or concepts (3 points each):

• (a) the power set of a set

The power set of a set S is the set of all subsets of S, that is, {T : T ⊆ S}.

• (b) a symmetric binary relation

A binary relation R is symmetric if whenever a pair (x, y) is in R, the pair
(y, x) is also in R.

• (c) the Inclusion/Exclusion Principle for two sets, also called theDouble Counting
Rule

If A and B are any two finite sets, the size |A ∪ B| of the set A ∪ B is |A| +
|B| − |A ∩B|.

• (d) the codomain of a function

The codomain of a function f : A → B is the B, the set of possible outputs
for the function.

• (e) when a binary relation on a set is a partial order

A binary relation is a partial order if it is reflexive, antisymmetric, and
transitive.
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Question 2 (15): For any positive integer n, let S(n) be the sum
∑n

i=1 i
3. That is, S(n) is the

sum of the numbers 13+23+ . . .+n3. For example, S(1) = 1 and S(3) = 1+8+27 = 36. We
would like to prove by induction that for all positive naturals n, S(n) is given by the closed

formula S(n) = (n
2+n
2 )2.

• (a, 3) Write the precise boolean statement P (n) that we would like to prove to be true
for all positive integers n.

P (n) says that S(n) = (n
2+n
2 )2.

• (b, 3) State and prove the base case (or base cases) for your induction.

We only need one base case, for P (1). It says that S(1) = (1
2+1
2 )2. The right-

hand side evaluates to (1+1
2 )2 = 1, and we know that S(1) = 1 is given.

• (c, 3) State the inductive hypothesis and inductive goal for your inductive step.

We only need the statement P (m − 1), though we could include the other
statements P (1) through P (m − 2) if we like, and P (m − 1) says that S(m −
1) = ( (m−1)2+(m−1)

2 )2. The IG says that P (m) is true, which says that S(m) =

(m
2+m
2 )2.

• (d, 6) Prove your inductive step, completing the proof.

We know that S(m) = S(m−1)+m3. Applying the IH, S(m−1) = ( (m−1)2+(m−1)
2 )2.

We can rewrite S(m−1) as ( (m−1)m
2 )2 = (m−1)2m2

4 . Adding this term to m3 = 4m3

4 ,

we get m2(m2−2m+1+4m)
4 , which is (m(m+1)

2 )2, proving that P (m) is true.
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Question 3 (20): Here we define a sequence of positive integers by the rules G(1) = 1, G(2) = 3,
G(3) = 9, and for all n with n ≥ 4, G(n) = 8G(n− 2) + 3G(n− 3). Prove by induction, for
all positive integers n with n > 1, that G(n) = 3n−1.

• (a, 4) Write the precise boolean statement P (n) that we would like to prove to be true
for all positive integers n.

P (n) says that G(n) = 3n−1.

• (b, 4) State and prove the base case (or base cases) for your induction.

We need three base cases, for P (1), P (2), and P (3), because the last rule can
only be applied if n ≥ 4. All three cases are true because G(1) = 1 = 31−1,
G(2) = 3 = 32−1, and G(3) = 9 = 33−1.

• (c, 4) State the inductive hypothesis and inductive goal for your inductive step.

The IH says that for all i with 1 ≤ m− 1, P (i) is true. The IG says that P (m)
is true, meaning that G(m) = 3m−1.

• (d, 8) Prove your inductive step, completing the proof.

We need an inductive step for every m with m ≥ 4. By the rule, G(m) =
8G(m−2)+3G(m−3). By the IH applied to m−2 and m−3, G(m−2) = 3m−3 and
G(m−3) = 3m−4. Thus G(m) evaluates to 8 ·3m−3+3 ·3m−4. Since 3 ·3m−4 = 3m−3,
G(m) evaluates to 9 · 3m−3 = 3m−1, satisfying the statement P (m).
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Question 4 (15): Let A be the set {a, b, c, d}, let B be the set {1, 2, 3, 4}. Let R ⊆ A×B be the
relation {(a, 3), (b, 1), (d, 2)}, S ⊆ A×B be the relation {(a, 2), (c, 4), (d, 2)}, and T ⊆ A×B
be the relation {(b, 4), (c, 4), (d, 2)}.

• (a, 5) Which of the relations R ∪ S, R ∪ T , S ∪ T , and R ∪ S ∪ T , if any, are functions
from A to B? Explain your answers.

R∪S is not because it maps a to both 2 and 3. R∪ T maps b to both 1 and 4.
S ∪ T is because it maps a only to 2, b only to 4, c only to 4, and d only to 2.
R ∪ S ∪ T is not because it has the same violations as does R ∪ S and R ∪ T .

• (b, 5) Explain why R ∪ (S ∩ T ) is a function from A to B.

Each element of A is mapped to exactly one element of B: a to 3, b to 1, c to
4, and d to 2.

• (c, 5) Is R ∪ (S ∩ T ) an invertible function? If so, describe its inverse and explain why
it is the inverse. If not, justify your claim that it is not.

This function is invertible, because its inverse {(1, b), (2, d), (3, a), (4, c)} maps
each element of B to exactly one element of A.
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Question 5 (15): Let f : A → B and g : B → C be any functions, and let h : A → C be the
composition of f and g, which is the function whose rule is “h(x) = g(f(x))”.

Recall the definition of an onto function: f : A → B is one-to-one if ∀y ∈ B, ∃x ∈ A, f(x) =
y.

1. (a, 10) Explain why, if f and g are both onto functions, h is also a onto function.

The statement that h is onto is ∀z ∈ C,∃x ∈ A, h(x) = z. We need to show if
the Reader chooses any alleged counterexample to the statement “existsx ∈
A, h(x) = z” must fail. Suppose Reader chooses an element z. Because g is
onto, we know that there exists an element y of B such that g(y) = z. Because
f is onto, there must exist an element x of A such that f(x) = y. But then
h(x) = g(f(x) = g(y) = z, and z is not a counterexample.

2. (b, 5) If h is a onto function, is it necessarily true that f and g are both onto functions?
Explain your answer.

It is not necessarily true. Let A have one element x, B have two elements y
and y′, and C have one element z. Let f(x) = y and g(y) = z, so that h(x) = z
and h is onto (since every element of C has an element of A that is mapped
to it by h). But in this case f is not onto, because the element y′ of B is not
mapped to any element of A by f .

Many of the proposed counterexamples were slightly wrong because their g
was not a function, since they didn’t assign any value to the element in B
that was not hit by f . Any value would do, but there has to be one.
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Question 6 (20): Here are ten true/false questions, worth two points each. There is no credit
for blank answers, so you should answer all the questions.

• (a) Define a sequence of real numbers by the rule a1 = 2, a2 = 1 and, for all n with
n > 2, an = (an−1 + an−2)/2. Then for all positive integers n, an is given by the closed
form an = (4/3) + (2/3)(−1/2)n.

FALSE. The correct closed form is (4/3) + (2/3)(−1/2)n−1. You could prove
the inductive case of this, but the base case is wrong.

• (b) If the preconditions of a program are true, and it terminates, then its postconditions
will be true.

FALSE. This is true if the program is partially correct, but we did not say
that it is.

• (c) Let P (n) be a predicate over the positive integers. If we prove (P (m−2)∧P (m−3)) →
P (m) for all m with m ≤ 4, and we prove P (1), P (2), and P (3), then it may still be
possible that for some positive integer n, P (n) is false.

TRUE. These steps would form a valid proof by induction that P (n) is true for
all positive integers n, except that I mistakenly wrong “m ≤ 4” rather than
“m ≥ 4”, making my inductive step completely useless. A student pointed me
to the error late in the in-person exam. This made the true/false question
too tricky, in my opinion, for the level of this course. So I am giving credit
for both “FALSE” and “TRUE” answers on this question.

• (d) Let Q(n) be a predicate over the positive integers, such that Q(3) is false, and such
that for all n such that n ≥ 9, Q(n) → Q(n − 8) and Q(n − 8) → Q(n) are both true.
Then it is not possible that for some positive integer k, Q(k), Q(k+1), Q(k+2), Q(k+2),
Q(k + 3), Q(k + 4), Q(k + 5), and Q(k + 6) are all true.

FALSE. There cannot be eight consecutive true values, because one of them
would be of the form Q(8m+3), and we can prove by induction that Q(8m+3)
is false for all m. But there’s nothing to stop seven consecutive values to all
be true.

• (e) The statement A ∪ (B ∩ C ′) = (A ∩B) ∪ (A ∩ C ′) is a set identity.

FALSE. This is a garbled version of the Distributive Law. If B and C ′ are
disjoint, the left-hand set is empty, but if any element is in both A and B,
the right-hand side is not.

• (f) If A and A∪B are both infinite sets, then it is possible that B is finite, and it is also
possible that B is infinite.

TRUE. The union of an infinite set and another set is infinite, whether the
second is finite or infinite.

• (g) If R ⊆ A × A and S ⊆ A × A are two symmetric relations on the same set, then
R ∩ S is a symmetric relation but R ∪ S need not be symmetric.

FALSE. Both R ∩ S and R ∪ S must be symmetric. For example, if the pair
(x, y) is in R ∪ S, it must be in either R or in S, and either condition forces
(y, x) to be in the same set, putting it into R ∪ S.

• (h) If a and b are any two real numbers with a ̸= 0, then the function f : R → R with
the rule f(x) = ax+ b is invertible.

Its inverse is g(y) = (y − b)/a.
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• (i) Let f : A → B be a function where A is an infinite set and B is a finite set. Then f
must be an onto function. (Note: The term “onto function” is defined in Question 5.)

FALSE. If B has more than one element, and f maps every element of A into
the same element of B, f is not onto.

• (j) A partial order R must contain at least two elements x and y such that R(x, y) and
R(y, x) are both false.

FALSE. That would be true if R were a partial order that is not a total order,
but total orders are also partial orders.
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