
Dynamic Programming

When a function is defined, or can be defined, recur-
sively, it is natural to compute it with a recursive algo-
rithm. Sometimes, however, this natural solution is much
slower than other methods.Dynamic programming is a
general method for speeding up such algorithms by elim-
inating redundant computations.

A conceptually simple way to do this ismemoization.
Whenever you compute the value of a function on par-
ticular inputs,store the result in case you are asked for
the same value again. This can be done automatically,
but it usually is more practical to create atable for the
values of the function on any of the inputs that might oc-
cur. Once this table is designed, the values can be filled
in bottom-uprather thantop-down.

Let’s illustrate this with a simple example.

1

The Fibonacci Function

Define the functionF from N to N by the following
rules:

F (0) = 0

F (1) = 1

F (n) = F (n− 1) + F (n− 2) (if n ≥ 2)

The natural recursive algorithm, in Java, looks like:

int fib (int n) {
if (n <= 1) return n;
return (fib(n-1) + fib(n-2));}

But this algorithm is hideously slow (why?). Far better is
to store the intermediate values in a table:

int fib (int n) {
int [] table = new int [n+1];
table[0] = 0;
table[1] = 1;
for (int i=2; i <= n; i++)

table[i] = table[i-1] + table[i-2];
return table[n];}

2

The Knapsack Problem

Here is another example, a typicaloptimization prob-
lem called theknapsack problem. We have a set ofn
objects, where objecti hasweight wi andvalue vi. Our
input is the list of objects plus aweight limit , and our
goal is to choose the set of objects of maximum value
among those sets that satisfy the weight limit.

For simplicity of presentation, we’ll confine our attention
here to the special case wherevi = wi for eachi. (This is
often called thesubset sumproblem, particularly in the
version where we are asked whether the weight limit can
be metexactlyby some subset.)

3

The knapsack problem does not appear to lend itself eas-
ily to divide-and-conquer, and it is easy to construct ex-
amples where the obvious greedy algorithm fails. (It’s
easy to see that the family of sets that fit under the weight
limit need not be a matroid.) But there is a reasonable re-
cursive attack on the problem.

Consider a set ofn items with weight targett. If a set
doesnot include itemn, it is a subset of the firstn − 1
items that meets the targett. If the setdoesinclude item
n, then the rest of the set is a subset of the firstn− items
that meets the targett − wn. We can solve then-item
problem with two calls to then− 1-item problem:

int knap (int i, int t)
{// returns size of largest subset

// of first i items that fits in t

if (i == 0) return 0;
if (w[i] > t) return knap(i-1, t);
return max (knap(i-1, t),

w[i] + knap(i-1, t - w[i]));}

4

As written, this algorithm has a running time given by
the recurrence

T (n) = 2T (n− 1) + O(1),

which has solutionT (n) = O(2n), unaceptably slow. But
note that the recursive calls toknap all have inputsi and
j with i ≤ n andj ≤ t.

We can speed up the algorithm considerably by creating
a two-dimensional table,n + 1 by t + 1, for the values of
knap(i,j) . We then build the table bottom-up:

int knap(int n,int t) {
int [][] table = new int[n+1,t+1];
for (int j=0; j <=t; j++) table[0,j] = 0;
for (int i=1; i <= n; i++)

for (int k=0; k <= t; k++)
int useI = 0;
if (k >= w[i])

useI = w[i] + table[i-1, k - w[i]];
table[i,k] = max(table[i-1, t], useI);

return table[n, t];}

5

This method clearly uses timeO(nt), since the code in-
side both loops takesO(1) time. Note that this code, like
the recursive version, returns thesizeof the heaviest set
that meets the weight limit, rather than the set itself. We
can get the set by either (1) recording a bit for eachi
telling whether itemi is in the set being built, or (2) in
the dynamic programming version, reconstructing the set
from the table.

You may have heard that the knapsack and subset sum
problems areNP-complete. Our running time is polyno-
mial in n and t – should we tell the Clay Mathematics
Institute that we have solved theP versusNP problem?

Unfortunately, no. We have given a polynomial solution
to theunary subset sum problem, where the input size
is considered to be the sum of the weights and the weight
target rather than thenumber of bitsneeded to represent
those numbers in binary. Ift were ak-bit number, for
example, ourO(nt) running time would be(n2k), expo-
nential in the input size. When we prove later thatbinary
subset sumis NP-complete, we will see that having big
numbers as our weights and weight target is crucial to
our proof.

6

Dynamic Programming in General

When can we use dynamic programming to speed up an
exponential-time recursive algorithm?

• The problem must break down into subproblems that
have theoptimal substructure property – solving
each subproblem optimally must be sufficient to solve
the global problem optimally.

• The subproblems mustoverlap in that different sub-
problems must require us to solve some of the same
sub-subproblems. This allows us to save time by avoid-
ing the redundant work.

Dynamic programming saves time at the cost of addi-
tional space. The recursive versions of our Fibonacci and
knapsack algorithms used space mostly in the method
stack for the recursive calls:O(n) for fib(n) andO(n)
for knap(n,t) . The dynamic programming table for
Fibonacci numbers uses the sameO(n) space, but the
table for knapsack usesO(nt) space, far more than the
recursive version.

7

In CMPSCI 601, we learn that the problem of evaluating
a boolean circuit is complete for the classP, meaning
that any polynomial-time algorithm can be expressed as
such a circuit. The obvious recursive algorithm to eval-
uate a circuit takes exponential time, because it is essen-
tially evaluating the booleanformula corresponding to
the circuit, which is bigger unless the circuit itself is al-
ready a tree.

Applying dynamic programming to this recursive algo-
rithm gives us a table with the value of every gate of
the circuit. We fill in these values bottom up as the in-
puts to each gate become known. This is the natural,
polynomial-time way to evaluate the circuit (the time can
be made linear in the number of gates in the circuit).
But the space used is now proportional to the number
of gates. In the recursive algorithm, the space used in the
method stack was proportional to thedepth of the circuit.

8

The Shortest Path Problem

We turn now to a family of problems where some of the
most important algorithms use dynamic programming.
Given a directed graph with non-negative weights on the
edges, theshortest path problemis to find the path from
one vertex to another that has the smallest total weight.
(So we regard the edge weights as distances.) There are
many variants of the problem:

• Single-Pair: Input weighted graphG and verticess
andt, and output the shortest path froms to t.

• Single-Source: Input G ands and output the short-
est path froms to each other vertex. Oddly, there is
no way known to solve the single-pair problem that
is asymptotically better than the best solution to the
single-source problem. Note that the paths can easily
be reconstructed if we just output thedistancefrom
s to each other vertex. We’ll solve this next lecture
with Dijkstra’s Algorithm .

• Single-Destination: Input G and t and output the
shortest path from each other vertex tot. This is
clearly reducible to the single-source problem, by re-
placingG with a directed graphGR that has each ar-
row of G’s graph reversed with the same weight.

9

• All-Pairs: InputG, output the shortest path (or short-
est distance) from eachs to eacht. We’ll see two
algorithms for this problem today.

• Unit Weight: If every edge has weight1, breadth-
first search solves the single-source problem in time
O(|E|). We find all vertices at distance 1 froms, then
all vertices at distance 2, distance 3, and so on. But
this approach fails in general if different edges have
different weights.

• Transitive Closure: A special case of the shortest-
path problem comes when we only ask whether a path
exists, ignoring the weights. We can ask this in the
single-pair, single-source, or all-pairs versions. We
know that DFS or BFS solves the single-source ver-
sion inO(|E|) time.

10

Min-Plus Matrix Powering

We can describe ann-vertex weighted graph by ann byn
matrix, where entryast represents the weight of the edge,
if any, from s to t. If there is no edge, we assignast to
be∞. For most applications we setass to be0 for each
edge, to account for the fact that we may travel froms to
s in distance0, taking no edges.

The desired output for the all-pairs problem can also be
represented by ann by n matrix whose entries are non-
negative real numbers or∞. Nowdst records the distance
from s to t along the shortest path, or∞ if there is no
path at all. (Again,dss = 0 because of the zero-edge path
from s to s.) Thus the all-pairs problem can be thought
of as transforming the matrixA to the matrixD. We can
express this transformation in terms of a kind of matrix
multiplication.

11

The definition of matrix multiplication requires us to “add”
and “multiply” matrix entries. We have a valid defini-
tion of matrix multiplication whenever the “addition” and
“multiplication” satisfy the axioms for asemiring – each
operation is associative and has an identity element, addi-
tion is commutative, and the distributive law holds. Any
ring or field is also a semiring, but so are the natural num-
bersN under+ and× and the boolean semiring{0, 1}
under OR and AND.

Here we define a new structure that we call themin-plus
semiring. The elements are the non-negative real num-
bers together with∞. The “addition” operation is the
minimum operation, so that “a + b” is the smaller ofa
andb. The “multiplication” operation is real-number ad-
dition, with the additional rule that∞ + x = ∞ for any
x. The “additive identity” is∞ and the “multiplicative
identity” is 0.

12

It is easy to prove the following by induction for any
semiringS:

Path-Matrix Theorem: Let G be a graph with edges
weighted by elements ofS and letA be the correspond-
ing matrix. Lets andt be vertices ofG and letk be any
non-negative integer. Then the(s, t) entry of Ak is the
“sum”, over all paths of exactlyk edges froms to t, of
the “product” of the weights of the edges on the path.

In the min-plus semiring, the “product” of the weights of
the edges on a path is the sum of the weights, or just the
total distance along the path. The “sum” over all paths
just gives us the length of the shortest path.

Of course we don’t know which value ofk will causeAk

to have the length of the longest path, but a simple trick
will help us. Remember thatAss is always zero. This
means that ak-step path also gives rise to many paths
with each number of edges greater thank – paths that
use the zero-length “edges” at one of the vertices. SoAk

st

actually gives us the length of the path that is shortest
among all paths of lengthless than or equal tok.

13

Furthermore, we don’t have to worry about very long
paths. If a path has more thann − 1 edges, it must re-
visit a vertex. We can make a shorter path with the same
source and destination by deleting the edges between the
two visits to the same node. By repeating this process,
we can get to a path with at mostn− 1 edges. Since the
weights are all non-negative, this path is no longer than
the original one.

To conclude, then, the shortest-path-distance matrixD is
related to the single-step path matrixA by the rule:

dst = An−1
st

where the matrix powering uses matrix multiplication over
the min-plus semiring.

14

How long does it take to computeD? Because the Strassen
algorithm requiressubtractionof matrix elements, and
the min-plus semiring does not support subtraction, we
must use ordinary matrix multiplication. This usesO(n3)
semiring operations, and since we can take a minimum or
sum of two real numbers inO(1) steps this isO(n3) steps
in all.

If we calculateAn−1 in the most obvious way we will
needn − 2 matrix multiplications forO(n4) total time.
But it’s better to userepeated squaring, which needs
onlyO(log n) matrix multiplications and thusO(n3 log n)
total time.

Note also that in the same time we can compute the tran-
sitive closure of the graph, by powering over the boolean
semiring. Now the atomic operations are bit operations.

15

The Floyd-Warshall Algorithm

The min-plus powering algorithm uses dynamic program-
ming in a sense, because we store the answers to sub-
problems like the entries of the matrixAi for certain val-
ues ofi. But we can solve the all-pairs problem a bit
more quickly by using dynamic programming in another
way.

We define anintermediate vertexof a path to be any ver-
tex other than the source or the destination. (Thus paths
with zero or one edge have no intermediate vertices at
all.) Our subproblems will be defined in terms of inter-
mediate vertices.

16

Definition: If 0 ≤ k ≤ n, d(k)
st is the length of the shortest

path froms to t that has only intermediate vertices in the
set{1, . . . , k}. If there is no such path,d(k)

st = ∞. The
matrix D(k) is defined to have entryd(k)

st for every vertex
s andt.

The matrixD(0) refers to paths with no intermediate ver-
tices at all, which must be single edges (or trivial paths
from a vertex to itself). It is thus exactly the same ma-
trix asA. At the other extreme,D(n) is defined in terms
of all paths, so it is exactlyD, the shortest-path distance
matrix. The idea of our algorithm will be to work from
D(0) through eachD(i) until we have computedD(n).

17

How can we computeD(i) from D(i−1)? We must con-
sider how a path could get froms to t while using only
intermediate vertices numbered from1 to i. One possi-
bility is that it never uses vertexi at all. In this case we
have already considered the path, and the length of the
smallest such path isd(i−1)

st . If it usesi as an intermediate
vertex, then it must consist of a path froms to i, followed
by a path fromi to t. Each of these paths only has inter-
mediate vertices numbered from1 throughi− 1 (why?),
so the shortest such paths have lengthsd

(i−1)
si andd

(i−1)
it

respectively. Thus:

d
(i)
st = min(d

(i−1)
st ,

d
(i−1)
si + d

(i−1)
ti)

The computation of each entry takes onlyO(1) time, so
we can computeD(i) from D(i−1) in O(n2) time. The
total time to compute alln matrices isO(n3), and this
suffices to solve the all-pairs shortest path problem.

18

In the text this algorithm is described as filling in ann
by n by n + 1 table. This is the natural way to use dy-
namic programming to speed up a recursive algorithm
based on the equation for updating an entry. In an ac-
tual implementation, though, we would probably want to
save space byreusingthe space forD(i−2), for example,
to storeD(i). This would make the space usageO(n2)
rather thanO(n3). (Can a similar trick save space in any
of the other algorithms in this lecture?)

The boolean version of this algorithm is usually called
Warshall’s algorithm and finds the transitive closure of
a boolean matrix (more technically, the reflexive, transi-
tive closure) inO(n3) bit operations.

Another use of this same strategy comes in an algorithm
to compute aregular expressionwith the same language
as a givendeterministic finite automaton. We may visit
this problem on HW#3.

19

