
CMPSCI611: The Matroid Theorem Lecture 5

We first review our definitions:

A subset systemis a setE together with aset of subsets
of E, calledI, such thatI is closed under inclusion.
This means that ifX ⊆ Y andY ∈ I, thenX ∈ I.

The optimization problem for a subset system(E, I)
has as input a positive weight for each element ofE. Its
output is a setX ∈ I such thatX has at least as much
total weight as any other set inI.

A subset system is amatroid if it satisfies theexchange
property : If i andi′ are sets inI andi has fewer elements
thani′, then there exists an elemente ∈ i′ \ i such that
i ∪ {e} ∈ I.
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The Generic Greedy Algorithm

Given anyfinite subset system(E, I), we find a set inI
as follows:

• SetX to ∅.

• Sort the elements ofE by weight, heaviest first.

• For each element ofE in this order, add it toX iff the
result is inI.

• ReturnX.

Today we prove:

Theorem: For any subset system(E, I), the greedy al-
gorithm solves the optimization problem for(E, I) if and
only if (E, I) is a matroid.
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Theorem: For any subset system(E, I), the greedy al-
gorithm solves the optimization problem for(E, I) if and
only if (E, I) is a matroid.

Proof: We will show first that if(E, I) is a matroid, then
the greedy algorithm is correct.

Assume that(E, I) satisfies the exchange property. Pick
an arbitrary weight function, letX be the set chosen by
the greedy algorithm, and letY be any other maximal set.
We show thatX has weight at least that ofY .

First note thatX andY must have the same size, which
we will call n. If one had fewer elements, we could add
an element of the other and stay inI. ButY is assumed to
be maximal inI, and ifX were not maximal the greedy
algorithm would add an element to it rather than stopping
with it.
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(We are proving that if(E, I) is a matroid, greedy setX
has weight at least that of any arbitrary maximal setY .)

X = {x1, . . . , xn}
Y = {y1, . . . , yn}

Here the elements are listed in descending order of weight.
If Y has total weight greater than that ofX, then for some
k, w(xk) < w(yk). Choose the smallest suchk.

Now let α be the firstk − 1 elements ofX and letβ be
the firstk elements ofY . By the Exchange Property, we
can make a setZ in I by adding one of the elements of
β to α. Since each element ofβ has weight greater than
that ofxk, Z has greater weight than{x1, . . . , xk}.

This means that at some point, the greedy algorithm chose
anxj when a higher-weight element ofZ was available.
This contradicts the definition of the greedy algorithm.
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Now we must prove that if(E, I) fails to satisfy the Ex-
change Property, then there is some weight function on
which the greedy algorithm fails.

Suppose there are two setsi andi′ in I, with |i| < |i′|,
such that no element ofi′ \ i can be added toi while
keeping the result inI. Letm be|i|. Our weight function
is:

• Elements ini have weightm + 2,

• Elements ini′ \ i have weightm + 1,

• Other elements have weight0.

Greedy Algorithm: Tries elements of weightm+2 first,
gets allm of them, then is stuck because no element of
weightm + 1 fits, total scorem(m + 2).

Optimal Algorithm: Does at least as well as the seti′,
which has total weight at leastm2 +2m+1 because each
of its elements has weight at leastm + 1.

This concludes both halves of the proof.
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CMPSCI611: The Cardinality Theorem Lecture 5

A subset system is amatroid if it satisfies theexchange
property : If i andi′ are sets inI andi has fewer elements
thani′, then there exists an elemente ∈ i′ \ i such that
i ∪ {e} ∈ I.

A subset system(E, I) satisfies theCardinality Prop-
erty if for any setA ⊆ E, all maximal independent sets
in A have the same number of elements. (X is a maximal
independent set inA if X ∈ I and there is no setY ∈ I
with X ⊆ Y ⊆ A.)

The Cardinality Theorem: A subset system is a matroid
iff it satisfies the Cardinality Property.
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The Cardinality Theorem: A subset system is a matroid
iff it satisfies the Cardinality Property.

Proof: We showed earlier that in a matroid, all sets that
aremaximal inE must have the same cardinality, but now
we must show a bit more. LetA be a set and letX and
Y be two sets inI that are maximal inA. We must show
thatX andY have the same size.

SupposeX is smaller thanY . Then by the Exchange
Property, we can add some element ofY to X and keep
the resultZ in I. But sinceX andY are both subsets
of A, the setZ is also a subset ofA and thusX is not
maximal inA.
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The Cardinality Theorem: A subset system is a matroid
iff it satisfies the Cardinality Property.

For the other half of the proof, we will show that if(E, I)
is not a matroid, then it fails to satisfy the Cardinality
Property. LetX andY be two sets inI such that|X| <
|Y | but no element ofY \ X can be added toX to get a
result inI.

We letA beX ∪ Y . Now X is a maximal set inA, since
we cannot add any of the other elements ofA to it.

The setY maynot be maximal inA, but if it isn’t there
is some subset ofA that contains it and is maximal inA.
Since this set is at least as big asY , it is strictly bigger
thanX and we have a violation of the Cardinality Prop-
erty.
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If we now go back to the Maximum Weight Forest prob-
lem, we can see fairly easily that the subset system(E, I),
whereE consists of the edges of the graphG andI con-
sists of the acyclic sets of edges, satisfies the Cardinality
Property.

If G is connected, the maximal sets inI must be span-
ning trees. If not, they are spanning forests – forests that
consist of a spanning tree for each connected component
of G. (This is because if there were two nodes connected
by a path inG but not in the forest, there would be an
edge we could add to the forest without creating a cycle.

But we proved earlier that any forest onn nodes with
c connected components, it has exactlyn − c edges. If
A is any set of edges, the subgraph ofG with edge set
A hassomenumber of connnected components,c. Any
maximal acyclic set of edges must have exactlyn − c
edges. So all the maximal subsets ofA have cardinality
n − c. and the Cardinality Property holds.
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So the acyclic-edge-set subset system is a matroid, and
thus our general results about matroidsprove that the
Kruskal algorithm always produces a minimum spanning
tree. (As the greedy algorithm for MWF on the related
weight function would give us a maximum weight forest
whose edges would be an MST of the original graph.)

Next time we’ll consider themaximum matching prob-
lem, where we saw that the greedy algorithm does not
always work. The corresponding subset system is not
a matroid, but we will see that it is theintersectionof
two matroids. We’ll present an algorithm for the match-
ing problem on bipartite graphs, and show how it can be
adapted to any system that is the intersection of two ma-
troids.
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