
CMPSCI611: Greedy Algorithms and Matroids Lecture 4

Our next algorithmic paradigm isgreedy algorithms. A
greedy algorithm tries to solve anoptimization problem
by always choosing a next step that islocally optimal.
This will generally lead to alocally optimal solution,
but not necessarily to aglobally optimal one.

When the goal of our optimization is tomaximize some
quantity, we call a locally optimal solutionmaximal and
a globally optimal onemaximum. If we areminimiz-
ing the quantity, we call theseminimal andminimum
respectively.

We begin with a minimization problem that can be solved
with a greedy algorithm.

1

CMPSCI611: Minimum Spanning Trees Lecture 4

Suppose we have aweighted undirected graphG that is
connected. A spanning treeis a subset of the edges that
is connected and is atree (that is, it hasno cycles). Any
connected graph has a spanning tree, and it may have
many of them. Aminimum spanning tree (MST) is a
spanning tree that has a total weight (sum of the weights
of its edges) that is no greater than that of any other span-
ning tree. There may be more than one MST in case of
ties.

Note that edge weights are always positive. (We may
sometimes use edge weights of zero, but these could if
necessary be thought of as just very small positive num-
bers.)

2

Kruskal’s Algorithm is a greedy solution to the mini-
mum spanning tree problem.

• Sort the edges by weight, cheapest first.

• SetF to be the empty set.

• For each edgee in order, adde to F unless this would
create a cycle inF .

• ReturnF .

We need a way to determine whether an edgee creates a
cycle inF . To do this, we keep track of theconnected
componentsof F – the sets of vertices ofG such that
two vertices are in the same component iff there is a path
from one to the other inF . Let e = (x, y) wherex andy
are vertices. Ifx andy are in the same component, adding
e to F would create a cycle. If not, addinge merges the
two connected components.

The simplest way to merge the components is to scan a
table mapping vertices to components, moving each ver-
tex of the smaller component into the larger one.

3

We now need to prove that the Kruskal algorithm actually
produces an MST. First, though, a warmup problem to
get us used to working with graphs and induction:

One-Question Final Exam for CMPSCI 250:

Let F be a forest (a acyclic undirected graph) withn ver-
tices,k edges, andc connected components. Prove that
c = n− k.

Proof by induction one – we show that the desired fact
is aninvariant :

“As it was in the beginning, is now, and ever shall be”
(Anglican Book of Common Prayer)

Base Case:No edges,n components,n = n− 0.

Inductive Step: Add an edge – it merges two connected
components into one, since if its endpoints were already
connected it would create a cycle. By inductionc = n−k
before, nowc− 1 = n− (k + 1).

Conclusion: If we ever reachk = n− 1, thenc = 1 and
we have a tree.

4

Correctness of Kruskal:

Given a forestF , let S(F) be the set of spanning trees
that contain all ofF ’s edges.

As we add edges, the following invariant stays true: “S(F)
contains an MST”.

Base Case:SinceG is connected, an MST exists, and it
containsF which is∅.

Inductive Step: We assume thatS(F) has an MST, and
we add the cheapest available edge, callede = (x, y), to
F . We must show thatS(F ∪ {e}) contains an MST.

We’ll show that for any treeT in S(F) that doesn’tin-
clude e, there is a tree thatdoesinclude e and has the
same or lower total weight.

SinceT is a tree, it contains a path betweenx andy, the
endpoints ofe. Since there was no such path inF , the
path contains some edgee′ that is not inF . Our cheaper
tree is going to beT ′ = (T \ {e′})∪{e}. Sincee was the
cheapest available edge, this set has total weight equal or
smaller than that ofT . But how do we know thatT ′ is a
tree?

5

T ′ = (T \ {e′}) ∪ {e}

In T , e′ = (u, v) was part of a path fromx to y. In T ′, we
can still get fromu to v by going fromu back along the
path tox, overe to y, and backward on the path tov. So
the only edge inT that is not inT ′ can be successfully
bypassed inT ′, so every path inT can be simulated in
T ′, andT ′is connected.

Why doesn’tT ′ have a cycle? A cycle would have to con-
nectx to y by another route. But in the treeT there was
a unique path fromx to y, and we broke it by removing
e′.

Conclusion: At any time in the algorithm, ifF is not
a tree, there must be edges inG that join separate con-
nected components ofF . These edges must be at least as
expensive as any edges inF , since otherwise we would
have looked at them already and added them toF be-
cause they join components ofF .

So the algorithm can stop only whenF is a tree. At that
pointS(F) = {F}, soF itself must be an MST.

6

Timing of Kruskal:

The timing will depend on bothn, the number of vertices,
andk, the number of edges. (Note thatk ≥ n − 1 for a
connected graph, andk ≤

(
n
2

)
= O(n2) for any graph.)

Sorting the list of edges takesO(k log k) time.

Setting up our table of components for each vertex takes
O(n) time. By the simple method we have described,
updating the table takes one pass over the table, orO(n)
time. We will maken − 1 such sweeps forO(n2) total
time, because we will add an edge toF exactlyn − 1
times. We also might spend up toO(k) time checking
edges that we don’t add toF . Thus:

T (n, k) = O(k log k) + O(n) + O(n2) + O(k)

= O(k log k + n2)

In a few lectures we’ll see how to reduce this toO(k log k)
by using a betterunion-find data structure.

7

CMPSCI611: Subset Systems and Matroids Lecture 4

When do greedy algorithms work? It turns out that we
can give an answer to this question for a wide class of
optimization problems.

A subset systemis a setE together with aset of subsets
of E, calledI, such thatI is closed under inclusion.
This means that ifX ⊆ Y andY ∈ I, thenX ∈ I.

The optimization problem for a subset system has as
input a positive weight for each element ofE. Its output
is a setX ∈ I such thatX has at least as much total
weight as any other set inI.

We call I the “independent sets” of the subset system,
because in generalI will be defined so it will include ex-
actly those sets that don’t have a particular kind of “de-
pendence” among their elements. Let’s see some exam-
ples.

8

Examples of Subset Systems

Example 0: Let E be any set of vectors in some vector
space, and letI be the set of sets oflinearly independent
vectors. Clearly thisI is closed under inclusion. This is
the origin of the name “independent sets”.

Example 1:

E = {e1, e2, e3}
I = {∅, {e1}, {e2}, {e3}, {e1, e2}, {e2, e3}}

The closure under inclusion can be checked directly.I
can also be described as “all sets that don’t contain both
e1 ande3”.

Example 2: Let E be the edges of an undirected graph,
andI be the set of allacyclicsets of edges.

Example 3: Let E be the edges of an undirected graph,
andI be the set of sets of edges that don’t have two or
edges sharing a vertex. (These sets of edges are often
called “independent sets” even outside this context, and
are also known as “matchings”).

9

The Generic Greedy Algorithm

Given anyfinite subset system(E, I), we find a set inI
as follows:

• SetX to ∅.

• Sort the elements ofE by weight, heaviest first.

• For each element ofE in this order, add it toX iff the
result is inI.

• ReturnX.

This certainly gives us a set inI (unlessI is itself empty,
since∅ must be inI if any set is). It is amaximalset,
meaning that no element ofE can be added to it without
bringingX outside ofI. But a solution to the optimiza-
tion must be amaximumset, with weight greater than or
equal to that of any other set inI.

Our main result is that there is a property of set systems
that determines whether this greedy algorithm is guaran-
teed to give a maximum set for all possible weighting
functions.

10

Greedy Algorithm Examples:

Subset System 1:(not bothe1 ande3) We will gete2 and
the larger ofe1 ande3, which must be a maximum set in
I.

Subset System 2:(acyclic sets) This is theMaximum
Weight Forest (MWF) problem, which is the same as
the MST problem except that (a) the input graph need
not be connected, and (b) we want to maximize instead
of minimizing.

But we can convert the MST problem into an equivalent
MWF problem, and vice versa, as follows. Letm be the
maximum weight of any edge in the MWF problem, and
set the weight of each edgee in the MST problem to be
m− w(e) + ε.

The greedy algorithms produce exactly the same set for
the two weighting functions, and (since the number of
edges in the MST must ben− 1), a maximum set for one
function is a minimum for the other.

11

Subset System 3:(no edges sharing a vertex) Here is an
example where the greedy algorithm gets a maximal set
that is not maximum:

3 2

* ---- * ---- * * ++++* ---- * * ++++* ---- *
| | /2 | | / | | +
|2 |2 / | | / | | +
| | / | | / | | +
| 3 |/ | |/ | |+

* ---- * * ++++* * ---- *
| /2 | / + /
|2 / | / + /
| / | / + /
|/ |/ +/

* * *

(This is Figure 3.2 of the text.) The greedy algorithm
takes both weight-3 edges first, and gets the set in the
center, with a total weight of 6. But there is a different
independent set that has weight 7, shown on the right.

12

CMPSCI611: Definition of a Matroid Lecture 4

A subset system is amatroid if it satisfies theexchange
property : If i andi′ are sets inI andi has fewer elements
thani′, then there exists an elemente ∈ i′ \ i such that
i ∪ {e} ∈ I.

Subset System 1:This is a matroid, as we can check the
exchange property by inspection. For example, ifi =
{e1}, i′ = {e2, e3}, we can lete = e2.

Subset System 2:Next lecture we’ll show that thisis a
matroid.

Subset System 3:This is not a matroid – leti be the
greedy matching andi′ be the maximum matching in our
example. There is no edgee at all, much less ini′, that
can be added toi while keeping it independent.

13

Next time we’ll prove:

Theorem: For any subset system(E, I), the greedy al-
gorithm solves the optimization problem for(E, I) if and
only if (E, I) is a matroid.

This is good mathematics! We’ve found a property of set
systems that characterizes the behavior of the greedy al-
gorithm, but doesn’t have anything obvious to do with the
algorithm. Furthermore, this property can be expressed
in more than one way. We’ll also prove next time:

Cardinality Theorem: A set system(E, I) is a matroid
iff for any set A ⊆ E, any two maximal independent
subsets ofA have the same number of elements.

A property with ostensibly different characterizations is
more likely to be mathematically interesting. Examples
of such properties in CMPSCI 601 include the regular
languages and the Turing-decidable languages.

14

