
CMPSCI611: The Fast Fourier Transform Lecture 3

The Fast Fourier Transform (FFT) is a divide-and-conquer
algorithm to multiply two polynomials inO(n log n) time
rather than theO(n2) of the most obvious algorithm. In
this lecture we will:

• Set up the context ofpolynomial arithmetic ,

• See how fastevaluationandinterpolation will allow
us to multiply quickly,

• Reviewcomplex numbersandroots of unity.

• Present and analyze theFFT algorithms for evalua-
tion and interpolation, and finally

• See what this has to do with ordinaryFourier trans-
forms

1



Polynomial Arithmetic:

Suppose we are given two polynomials over the complex
numbers (or over a subset like the reals),A = ∑

i aix
i

andB = ∑
i bix

i, each of degree at mostn − 1. Each
polynomial can be represented by a vector, or array, of
its n coefficients.

AddingA andB is easy to do inO(n) time: If C = A+B
thenci = ai + bi for eachi. We can’t hope to do better
because we have to look at the entire input to be sure of
the right answer and it takesΩ(n) time to do this.

Multiplying A andB looks like a harder problem. IfC =
AB, C may have degree as large as2n − 2, and each
coefficient ofC depends on many of, maybe all of, the
coefficients ofA andB:

ck =
∑
i
aibk−i

where the range of the sum is such that bothai andbk−i

exist.

Computing eachck separately takesO(n) each for most
of them, orO(n2) in all. Can we do better?

2



Evaluation and Interpretation:

We can also represent a polynomial by giving itsvalue
on sufficiently many inputs. If we fixn distinct values
x0, . . . , xn−1, then then valuesA(x0), . . . , A(xn−1) de-
termine then coefficientsa0, . . . , an−1. We’ve been told
this in various math courses – why is it true?

The mapping from coefficients to functional values is a
linear tranformation, and can thus be represented by a
matrix. For example, ifn = 4:



1 x0 x2
0 x3

0

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3





a0

a1

a2

a3


=



A(x0)
A(x1)
A(x2)
A(x3)



To tell whether this linear transformation isinvertible,
we need to look at thedeterminantof its matrix and see
whether it is nonzero. It turns out that for generaln the
determinant of thisVandemonde matrixis

∏
i<j

(xj − xi)

which is nonzero iff thexi’s are all distinct.

3



If we have two polynomialsA andB represented by their
values at the samen points, andC = AB, then we can
calculate the values ofC at each of those points by the
rule C(xi) = A(xi)B(xi). We can get all these values
in O(n) total time. (Actually, ifA andB are arbitrary
polynomials of degree at mostn−1, we will want at least
2n − 1 points, so that we will have enough to determine
all the coefficients ofC).

This gives us an alternate way to compute the coefficients
of C. If we have fast ways toevaluatea polynomial with
given coefficients at given points, and tointerpolatethe
coefficients from sufficiently many functional values, we
can compute the mapping:

A, B (coefficients)→ C (coefficients)

by a three-step process:

A, B (coefficients)→ A, B (values)
↓

C (coefficients) ← C (values)

(This is the intent of the garbled Figure 2.9 on page 18.)

4



Complex Numbers and Roots of Unity:

Our divide-and-conquer algorithms for evaluation and in-
terpretation will take advantage of theparticular values
we choose for the pointsx0, . . . , xn−1. For any positive
numbern, there are exactlyn complex numbersω that
satisfy the equationωn = 1. These are called then’th
roots of unity.

Recall the geometric meaning of multiplication of com-
plex numbers. If we write two nonzero numbers asω1 =
ρ1e

iθ1 andω2 = ρ2e
iθ2, then their productω1ω2 is equal

to ρ1ρ2e
i(θ1+θ2). Thinking of the numbers as vectors, we

multiply their lengths and add their angles.

So then roots of unity are the numbersej·2πi/n for j from
0 throughn − 1. These are unit-length vectors evenly
spaced around the origin. For example, withn = 4 the
four roots of unity are1, i, −1, and−1. Figure 2-10 in
the notes shows then = 8 case.

TheHalving Lemma says that if we square each of the
n’th roots of unity, wheren is even, we get then/2’th
roots of unity, twice each.

5



An Evaluation Example:

Suppose we want to evaluateA(x) = a0 + a1x + a2x
2 +

a3x
3 at the four roots of unity1, i, −1, and−i. The four

values we need are:

a0 + a1 + a2 + a3

a0 + ia1 − a2 − ia3

a0 − a1 + a2 − a3

a0 − ia1 − a2 + ia3

Just as with the two divide-and-conquer multiplication
algorithms, we can identify common pieces of these sums:

(a0 + a2) + (a1 + a3)
(a0 − a2) + i(a1 − a3)
(a0 + a2)− (a1 + a3)
(a0 − a2)− i(a1 − a3)

Normally it would take us twelve additions to get these
four numbers, but if we calculate the four in parentheses
first, we can do it with eight. The FFT algorithm will use
the same idea.

6



FFT Evaluation:

Let A(x) bea0 + . . . + an−1x
n−1 and write it as follows:

A(x) = (a0 + a2x
2 + . . . + an−2x

n−2)

+x(a1 + a3x2 + . . . + an−1x
n−2)

= Aeven(x
2) + xAodd(x

2)

HereAeven is the polynomial whose coefficients are the
even-numbered coefficients ofA, and similarly forAodd.

Aeven(y) = a0 + a2y + a4y
2 + . . . + an−2y

n
2−1

Aodd(y) = a1 + a3y + a5y
2 + . . . + an−1y

n
2−1

7



A(x) = Aeven(x
2) + xAodd(x

2)

With a recursive call to our FFT evaluation algorithm,
we will be able to evaluate a polynomial withn/2 coef-
ficients atn/2 points. The polynomials we evaluate will
beAeven(x) andAodd(x), and we will evaluate them at the
n/2’th roots of unity. We will need some arrays to store
the answers:

• y is an array such thatyk = A(ωk
n)

• yeven is an array such thatyeven
k = Aeven(ω

2k
n )

• yodd is an array such thatyodd
k = Aodd(ω

2k
n )

By the Halving Lemma, then/2 points at which the re-
cursive call evaluates the functionsAeven and Aodd are
exactly the pointsω2k for eachk.

8



The FFT Evaluation Algorithm:

yEven = fft (a[0],...,a[n-2]);
yOdd = fft (a[1],...,a[n-1]);

for (int k=0; k < n/2; k++) {
y[k] = yEven[k] +

(OMEGAˆk) * yOdd[k];
y[k + n/2] = yEven[k] -

(OMEGAˆk) * yOdd[k];}
return y;

Recall thatA(x) = Aeven(x
2) + xAodd(x

2). The value
returned by this algorithm forA(ωk

n) is:

• Aeven(ω
2k
n ) + ωk

nAodd(ω
2k
n ), if k < n/2

• Aeven(ω
2k
n )− ωk

nAodd(ω
2k
n ), if k ≥ n/2

which is correct becauseωk+n/2
n = −ωk

n, asωn/2
n = −1.

The time analysis is just as for Mergesort:T (n) = 2T (n/2)+
Θ(n), soT (n) = Θ(n log n).

9



FFT Interpolation:

We argued that the matrixVn, whose(i, j) entry isωij
n ,

is invertible.

In fact its inverse is almost the same as itself. Its(i, j)
entry is 1

nω
−ij
n .

To check this, let’s compute the product of these two ma-
trices. The(i, j) entry of the product is

1

n

n−1∑
k=0

ωik
n ω−kj

n .

If i = j, each entry of this sum isωij−ij
n = 1, and the

sum isn. But if i 6= j, each entry isωk(i−j)
n , and these en-

tries are an equal number of copies of each of the powers
of ωi−j

n , which will add to zero because they are evenly
spaced around the unit circle.

The interpolation algorithm is thus very similar to the
evaluation algorithm. We need only switch the roles of
the arraysy anda, replace eachωn with ω−1

n , and divide
the answer byn before returning it. Of course the timing
analysis is exactly the same.

10



Ordinary Fourier Transforms:

A function f from the reals to the reals isperiodic if for
some nonzero numberT , it satisfies the rulef (x + T ) =
f (x) for all x. The most familiar periodic functions are
the sine and cosine from trigonometry.

The theory ofFourier Analysistells us that any continu-
ous periodic function on the reals may be expressed as an
infinite linear combination of sine and cosine functions
whose period is an integer fraction ofT , T/k.

11



If we think of f (x) as beingg(e2πix/T ), then we might
try to approximateg by giving it the correct values on
then roots of unity. As we have just seen, given any set
of values ofg on those roots of unity, there is a unique
polynomial withn coefficients that achieves those values.
The FFT algorithm can get us the coefficients from the
values, or vice versa.

If we could write g asa0 + a1x + . . . + an−1x
n−1, we

breakg down as the sum of functions of the formakx
k,

and thus break downf as the sum of functions of the
form ak(e

2πix/T )k, or ak(cos(2πkx/T ) + i sin(2πkx/T ).
These are the sine and cosine functions of the Fourier
transform. Asn increases, the approximation is correct
on more values and closer in general to the original func-
tion.

12


