
CMPSCI611: The Simplex Algorithm Lecture 24

Let’s first review the general situation for linear program-
ming problems. Our problem instandard form is to
choose a vectorx ∈ Rn, such thatx ≥ 0 andAx = b,
to maximize a linear functionc · x. HereA is anm by n
matrix,b is anm-vector withb ≥ 0, andc is ann-vector.

Last time we argued that a standard-form problem can be
converted intoslack form, where we think ofx as be-
ing defined byn − m of its variables. The ruleAx = b
defines the otherm variables in terms of those variables,
and changes then constraintsxi ≥ 0 into linear inequal-
ities on those variables.

Remember that we also adjustedA so that its rows are
linearly independent. This means that some sets ofm
columns ofA are linearly independent. If we have such
a set of columns, there is a unique way to form them-
vectorb as a linear combination of those columns. There
is thus a unique vectorx satisfyingAx = b and having
only thosem entries ofx nonzero. This is called abasic
solution to the linear program.

1



Geometrically, we represent vectorsx by points inRn−m,
and represent each linear constraint by ahalf-space, all
the points on a given side of somehyperplane. The set
of points, if any, that are on the right side of alln hyper-
planes is called thefeasible region. Our goal is to find
the point within the feasible region that maximizesc · x.
The objective functionc ·x is still a linear function of the
n − m variables we are modeling, because each of the
other variables is a linear function of those given the rule
Ax = b.

We also observed last time that the intersection of then
half-spaces forms apolyhedron in Rn−m, called apoly-
tope if it is bounded. We argued thatc · x must be maxi-
mized (or minimized) at somevertex of the polyhedron,
unless it takes on arbitrarily large or arbitrarily small val-
ues within the feasible region.

Note that at any of the pointsx giving a basic solution,
the equations ofn − m of the constraint planes are true,
andx must therefore be on the intersection of thosen−m
planes, at aparticular point. A basic solution is abasic
feasible solutionor BFS if the other variables are non-
negative, so the point is avertexof the feasible region.
As long as the constraint planes are in general position,
each vertex of the feasible region must be a BFS.

2



If we could compute the value of the objective function
at each vertex and find the largest value, we would thus
find the maximum. But it is entirely possible for there to
be exponentially many vertices in the polytope. For ex-
ample, suppose thatm = n/2 and that along withxi ≥ 0
for each of then−m variables considered, we get a con-
straintxi ≤ 1 from one of the other variables. The fea-
sible region is then ahypercubeof dimensionm. Every
point (x1, . . . , xn−m) with xi = 0 or xi = 1 is a vertex of
the hypercube, so there are exactly2n−m vertices.

Of course this particular problem does not have the con-
straint hyperplanes ingeneral position, because various
pairs of them are parallel. (The other condition for gen-
eral position is that no three planes mutually intersect in
a space of dimensionn − m − 2 instead of a space of
dimensionn−m− 3 – think of three planes inR3 inter-
secting in a common line instead of a point. Actually it’
s possible to havek hyperplance intersecting in a space
of dimension greater thann−m−k, and we have to rule
this out as well.) But the planes could be in slightly dif-
ferent places and still give a very similar-looking feasible
region with2n−m vertices.

3



The basic idea of thesimplex algorithm is very simple:

• Find a vertex inside the feasible region.

• As long as there is a neighbor of the current vertex
with a larger value ofc · x, move to it.

• When you reach a local optimum, declare victory.

Here a “neighbor” is a vertex that is connected to the cur-
rent vertex by a line segment. Remember that the vertex
is a point onn − m of the hyperplanes. If we take any
n−m− 1 of those hyperplanes, their intersection forms
a line. If we follow one of these lines, we either reach a
vertex (when we cross one of the other hyperplanes) or
go on forever.

This algorithm iscorrect because the feasible region is
convex– any line segment connecting two points in the
region lies entirely in the region. (This is proved by in-
duction on the number of half-spaces.) If there were a
point in the region with value greater than the local opti-
mum, there would be a way to get to it by following line
segments.

4



Each of the two tasks we have set ourselves, finding a
feasible vertex and moving to a more desirable neighbor,
presents some implementation difficulties. Once we have
dealt with them, we can considerhow fastthe simplex
algorithm works. Specifically, how many vertices might
we have to visit before we find the optimum one?

First, what exactly does it mean in terms of program-
ming to “be at a vertex” or “move along a line segment
to another vertex”? (The discussion here is only a gen-
eral sketch – CLRS Chapter 29 has a much more detailed
implementation of the simplex algorithm.) Our point is
a vectorx, which it is convenient to store as ann-vector
(so that only some of the variables represent coordinates
in the feasible region ofRn−m). Since we are in the fea-
sible region, we know thatAx = b is true, and to remain
in the region, we must keep this equation true.

If we are at a vertex, this means thatn − m of our n
variables are zero (because we are onn − m of the hy-
perplanes). There are thusm nonzero entries inx, and it
is them columns ofA corresponding to these entries that
are participating in the equationAx = b.

5



Now suppose that we want to move to a different vertex.
This means that we must take a variable that is currently
zero and make it nonzero. If we givexi some positive
valueλ, though, we will violate the constraintAx = b
because we will increaseAx by λ times thei’th column
of A. We need to change the other components ofx to
compensate.

Fortunately, we know that them columns ofA corre-
sponding to the nonzero entries of our originalx form
a basis ofRm. (Why? Since we are at a vertex, the
n-vector version ofx is a BFS, and the columns corre-
sponding to the nonzero entries of a BFS are linearly in-
dependent.) This means that columni can be written as a
linear combinations of thosen columns, so thatA times
the unit vectorei is equal toAs, wheres is a vector that
is nonzero only in thosem locations. If we subtractλAs
from Ax, by subtractings from x, at the same time we
addλ times columni to Ax, we keepAx the same and it
still equalsb.

6



As we increaseλ from zero,xi becomes nonzero, the
othern−m− 1 entries ofx that were zero stay zero, and
the m that were nonzero change, perhaps some up and
some down. As the point moves, we remain onn−m−1
of the constraint planes, meaning that we are on aline
between two vertices. Eventually, if one or more of the
nonzero components is decreasing,λ will reach a value
wherex − λs has a new zero entry. The first time this
happens, we haven−m entries ofx equal to zero again
and we are at a new vertex.

This vertex must still be in the feasible region, because
we could have left the feasible region only by making
an entry ofx negative (since we made sure thatAx = b
was still true). What happened to the objective function
c · x? By computingc · (ei − s), we can find the change
in c · x from every unit thatλ increases. Weonly want
to make variablexi nonzero if this change ispositive. In
that case, the objective function will be larger at the new
vertex than it was at the old vertex, and we will have
made progress.

7



There remains the problem of finding an initial BFS, so
we can start the whole process of the simplex algorithm.
This is a nontrivial problem! There are

(
n
m

)
possible sets

of m columns ofA, some of which represent basic solu-
tions because the columns are linearly independent. But
the basic solution for that set of columns may have nega-
tive entries, making it infeasible.

We can find a basic feasible solution to one problem in
standard form by creating another problem, with an easy-
to-find basic feasible solution, and solving that. Suppose
we want a basic feasible solution to the linear program
defined byAx = b. We make a new linear program with
m new variables in anm-vectory and defining equation
Ax + y = b. Our objective function in the new problem
is y1 + . . . + yn.

8



We apply the simplex method to find a solution minimiz-
ing this objective function. If we minimize it at0 (it can’t
get any lower because theyi’s must all be non-negative)
then we have a solution toAx + 0 = b which is just
a solution toAx = b – this can be our initial BFS for
the original problem. And if we minimize the objective
function at some positive value, this means that there is
no solution toAx = b at all – the feasible region of the
original problem is empty.

Of course we still have to start the simplex algorithm on
the new problem with an initial BFS. But now we can
takex to be0 andy to beb, finally using the fact that
b ≥ 0.

9



Given any vertex, a bit of arithmetic can tell us which
variables we could make nonzero and increase the objec-
tive function – whichchoices of pivotare available. But
if there are more than one choice, we must choose which.
Some possibilities are:

• We could choose the pivot that maximizes the change
in the objective function per unit ofλ,

• We could calculate the total increase in the objec-
tive function for each move to an adjacent vertex, and
maximize that,

• We could choose randomly from the acceptable piv-
ots.

Unfortunately, for each of these methods there are exam-
ples of linear programs where the simplex method visits
(or probably visits) exponentially many vertices and thus
takes exponential time. On the other hand, simplex “usu-
ally” does well, visiting only a linear number of vertices.
I say “usually” in quotes because it is not clear how to
define a probability distribution on linear programming
problems! Many papers have been written about that
“usually”.

10



When the number of dimensions of the problem (which
we have been callingn−m and will now calld) is small,
there are ways to get better performance such asO(n2d).
Some of these are randomized algorithms and are pre-
sented in Chapter 9 of Motwani-Raghavan.

They note a potential lower bound on the number of ver-
tices visited by the simplex algorithm. Thought of as just
a graph, the feasible region has adiameter, the longest
distance between two points if each edge has length1.
If the initial BFS and the optimum were at these two
points, then the algorithm would have to visit at least as
many vertices as the diameter. How big could the diam-
eter be? A theorem of Kalai and Kleitman says that it is
at mostn2+log d, but a better bound might hold. Even a
randomized version of simplex could only run in polyno-
mial time on all problems if this diameter bound can be
improved to polynomial.

(An aside about MIT combinatorist Dan Kleitman, apro-
pos of the social network talk yesterday – since he ap-
peared briefly in and was the mathematical advisor for
the film Good Will Hunting, Kleitman has a Bacon num-
ber of two to go with his Erd̈os number of one.)

11



There are non-simplex algorithms that are proved to al-
ways run in polynomial time. The first discovered were
ellipsoid algorithms (Khachian, 1979), but these are not
generally competitive with the simplex method. Kar-
markar in 1984 developed the firstinterior-point method,
which considers points that are not on the boundary of the
feasible region. This was controversial at the time be-
cause he at first kept his code proprietrary, which meant
that it could not be evaluated by the research commu-
nity. His and other interior-point methods are now more
widely used.

12



We’ll conclude today by looking at two more applica-
tions of linear programming.

We saw in Lecture #23 that the network flow problem can
be reformulated as a linear program. Since we already
have good polynomial-time deterministic algorithms for
network flow, this may seem to be a curiosity. But linear
programming is a very general problem. There are two
interesting variations of network flow for which the best
known method is linear programming:

• In MINIMUM-COST NETWORK FLOW (see CLRS
p. 787), each edge has a cost per unit transported over
it. Given a flow target, our problem is to find a flow (if
any) that meets the flow target and has the minimum
possible cost. It is easy to adjust our linear program
for network flow to force the total flow to be some
numbert, and then to minimize the cost, which is just
a linear function of the individual edge flows.

13



• In MULTICOMMODITY FLOW (CLRS p. 788), we
have a constant number of different commodities to
move across our network, each with its own source,
destination, and desired total flow. The total amount
of flow of all commodities across any edge may not
exceed the edge capacity. In effect we have a con-
stant number of flow problems which must be solved
simultaneously, so that the sum of their flows must
meet the edge capacities. (While flows of one com-
modity in opposite directions cancel, flows of dif-
ferent capacities do not – this poses some compli-
cations.) But we can make a linear program just as
before, with more variables and more constraints –
CLRS say that this is the best known way to solve the
problem.

14



We can use linear programming to get another approx-
imation algorithm for MIN-VERTEX-COVER with ap-
proximation factor 2. It is easy to formulate VERTEX-
COVER as anintegerprogramming problem – variable
xv is 0 if vertex v is not in the cover and1 if it is, each
edge(u, v) gives a constraintxu + xv ≥ 1, and we want
to minimize∑

v xv. The solution to this in integers is just
the minimum vertex cover, so it isNP-hard to find it.

But suppose we view these variables and constraints as
defining alinear program, and solve that. We get a real
number for each vertex, saying “how much” it is a mem-
ber of the vertex cover. So an edge(u, v) might be “cov-
ered” becausexu = 0.4 andxv = 0.6.

The approximation problem is toround this real-valued
vector to an integer vector, settingy1 to be1 if xi ≥ 1/2
andyi = 0 otherwise. Then the vectory defines a set of
vertices. This set is a vertex cover, because for any edge
(u, v) we hadxu + xv ≥ 1 and so at least one ofu or v
must have hadx value at least1/2 and thus havey value
1.

15



How does this approximation compare to the optimal ver-
tex cover? The total weight ofy can be no more than
double that ofx, because we only spent a unit ofy on a
vertex whenx had already spent at least a half-unit onv.
And the total weight ofx must be no more than the total
weight of the optimal vertex cover, becausex is the op-
timal real-valued vector meeting the constraints and the
optimum meets the constraints.

This general approach is calledrelaxing the integer pro-
gramming problem to a corresponding linear program-
ming problem – relaxing androunding like this is a fruit-
ful source of approximation algorithms.

16


