
CMPSCI611: Linear Programming Lecture 23

For our last three lectures we turn to a general optimiza-
tion problem calledlinear programming , which involves
maximizing or minimizing a linear function subject to
linear constraints. Linear programming was identified as
important in the 1950’s, and a general solution called
the simplex method was developed. It turns out that
the simplex method is not guaranteed to run in polyno-
mial time, but usually does so in the problems that occur
in practice. Since the development ofNP-completeness,
polynomial-time general solutions have been developed,
some of which are competitive with simplex in practice.

Here we’ll present the simplex method (in Lecture #24),
but not the more complicated poly-time methods. Our
main focus will be on understanding what a linear pro-
gramming problem is, and thus when a general linear
programming algorithm might be useful.

1



Let’s first see an example. We have a set of foods, each
of which provides a certain amount (per unit of food) of
each of a set of nutrients. We need to choose a diet, which
consists of a non-negative real-number amount of each
food. A feasible solutionwill be a diet that provides at
least the required daily allowance of each nutrient. Each
food also has acost per unit, and theoptimal solution
will be a diet that minimizes this cost while still being a
valid solution.

Let f be the number of foods andn be the number of
nutrients. A diet is thus a vectord of f real numbers.
Our input to the problem consists of:

• A vectorc of lengthf , wherecj is the cost of one unit
of food i,

• An n by f matrix M , wheremij is the amount of
nutrienti provided by foodj, and

• A vectorr of lengthn, whereri is the required daily
amount of nutrientj.

2



We write d andc as column vectors. Thus for a dietd,
Ad is a vector of lengthn, whosei’th component gives
the amount of nutrienti provided byd. To be a valid so-
lution, each entry ofAd must be greater than or equal to
the corresponding entry ofr. We write this last property
as “Ad ≥ r”, recognizing that we are overloading the op-
erator “≥”. (For one thing, this≥ is not a total order on
vectors, because two vectors might be incomparable.)

Our goal is thus to find a dietd that minimizes the dot
productc ·d (ascalar, or single real number) while meet-
ing the linear constraint Ad ≥ r. Also note that we
must have the vector inequalityd ≥ 0, where0 is the
vector of all zeroes, for a diet to make sense, because we
must have a non-negative amount of each food.

3



It is crucial to the definition of the problem that we are
allowed to choose areal number of units of each food
in our diets, rather than an integer. If we were forced to
choose integer values we would have an instance ofinte-
ger programming, and it is not hard to see that integer
programming in general isNP-hard. In fact, when we
proved the SUBSET-SUM decision problem to beNP-
complete, we really reduced 3-SAT to SUBSET-SUM
through an intermediate decision problem:

• We chose an integer vectorx, giving a setting of each
variablexi

• We boundedx by the vector inequalities0 ≤ x and
x ≤ 1

• Each clause gave us a constraint: for example, we
could writex1 ∨ ¬x2 ∨ x3 asx1 + (1 − x2) + x3 ≥ 1
or x1 − x2 + x3 ≥ 0. The set of constraints could
be written “Cx ≥ b”, whereC is a matrix specifying
which variable is in which clause andb is a vector that
indirectly tells how many negative literals are in each
clause.

4



The SUBSET-SUM problem had a solution iff there is an
integer vectorx satisfying all these constraints. You’ll
show on HW#5 that detecting whether there is a feasible
solution in alinear program is an equivalent to solving a
linear programming problem, so there are practical meth-
ods to solve it. Why can’t we use these methods to solve
SUBSET-SUM this way?

The problem is that the linear program might well have a
feasible solution where the values ofxi are not integers –
we could “satisfy a clause” by setting part of one variable
true and part of another true. The existence of such a
solution says nothing about whether an integer solution,
and thus a satisfying assignment, might exist.

5



It’s useful to have astandard form for linear program-
ming problems. We say that a problem is in standard
form if it is given in terms of anm by n matrix A, an
m-vectorb, and ann-vectorc so that:

• We want to choose an-vectorx to maximize the real
numbercẋ, but

• The vectorx must satisfy two constraints: them-
vector inequalityx ≥ 0 and then vector equation
Ax = b.

Is our diet problem in this standard form? No, we haved
with the constraintd ≥ 0, but the remaining constraints
are inequalities, not equalities. But we can convert the
problem into standard form without too much trouble.
Note that in a valid solution, whereAd ≥ r, we can write
Ad asr + e (using vector addition) wheree ≥ 0. Here
e is theexcessvector of nutrients our dieter eats beyond
the daily requirement.

6



We transformthe problem so thatx is a vector of length
f + n, the concatenation ofd ande. Now forcingx ≥
0 forces bothd ≥ 0 ande ≥ 0, as desired. We need
to define equality constraints that will force the correct
relationshipAd = r+e. All we need is to haveAd−Ie =
r, which we can write asBx = r whereB is a matrix that
is a concatenation ofA and−I.

In general a linear programming problem has some vec-
tor of n variables,x each of which may be constrained to
be non-negative, constrained to be positive, or not con-
strained at all. Then we havem linear constraints, each
of the formai ·x = bi, ai ·x ≥ bi, orai ·x ≤ bi. We could
make these constraints into a matrix equationif they were
all equalities.

But we canmakethem all equalities, by adding new vari-
ables just as we did with the diet problem. For every
constraint of the formai · x ≥ bi, we make a newscalar
variableyi to represent the extent by which the constraint
is oversatisfied. So we haveai · x = bi + yi andyi ≥ 0.
The first equation can be writtenai ·x− yi = bi, which is
a linear constraint on what are nown + 1 variables, then
variables inx together withyi.

7



We deal withai ·x ≤ bi just the same way, lettingai ·x+
y = b with y ≥ 0. The only remaining problem is any
unconstrained variablesxi. But for these we can just let
xi = x′i − x′′i with x′i ≥ 0 andx′′i ≥ 0.

So now we have a (perhaps longer) vector of variablesz,
with z ≥ 0, and a set of linear equality constraints that
we can writeAz = b. We can make two more general
simplifications:

• Because we can multiply both a row ofA and the
corresponding entry ofb by−1 without changing the
meaning of the equations, we may assume the vector
inequalityb ≥ 0.

• If there are linear dependences among the rows ofA,
we can delete any redundant rows (or just give up if
the constraints are contradictory,e.g., xi = 2 andxi =
3).

• If removing linearly independent rows gives usAx =
b whereA is a squarematrix we just invertA and
report the answer asx = A−1b – if this fails to sat-
isfy x ≥ 0 then there is no solution. Remember that
inverting a matrix is of similar complexity to matrix
multiplication.

8



Let’s look at one more example, anetwork flow problem
with n vertices ande directed edges. Remember that we
have a flowfuv on each edge(u, v), satisfying theskew
symmetry constraintsfuv + fvu = 0 for every pair of
vertices and theflow conservationconstraints∑v fuv = 0
for every vertex excepts andt. We can write these last
constraints asBf + Fd = 0, where:

• B is ann by e matrix with entry+1 when an edge
flows out of a vertex and−1 when it flows into a ver-
tex,

• f is ane-vector giving the flow on each edge (with an
entry for bothfuv andfvu),

• F is a scalar, the size of the flow (the net amount out
of s or into t)

• d is ann-vector with entry−1 for s, 1 for t, and0
elsewhere

We want to maximize the scalarF while keeping all the
equality constraints and keeping the vector inequalityf ≤
c, wherec is an e-vector giving the maximum flow on
each edge in its given direction.

9



To convert this problem to standard linear programming
form, we letg be ane-vector giving thesurplus capacity
cuv − fuv for each edge(u, v). Now we can just say that
g ≥ 0, and the remaining constraints are all equality con-
straints. For everyu andv, we haveguv + gvu = cuv + cvu

– these replace the skew symmetry constraints. Once we
recastB in terms ofg as a new matrixB′, we getB′g = z
for some constant vectorz, and we want tominimizethe
excess capacity out of vertexs.

Remember that in the standard problem we want to min-
imize some linear function of the variables. When we
create new variables, we give them zero weight in the
function to be minimized. In the diet example the cost is
a given linear function of the food items, and in the max
flow example it is the excess capacity out of the start ver-
tex.

Why should we expect this minimization problem to have
a nice solution in general? This should become clearer
when we look at ageometricinterpretation of linear pro-
gramming.

10



CMPSCI611: Feasible Solutions Lecture 23

A linear programming problem in standard form gives
us a space of values for a vectorx – the segment of the
Euclidean spaceRn where all values are positive. (With
n = 2 this is the northeast quadrant, whenn = 3 it is
an octant, and so forth.) We then have a set ofm < n
constraints. What do they look like geometrically?

A single linear constraint of the forma · x = b, where
a is a constant vector,x a variable vector, andb a scalar
constant, represents aplane or hyperplane in Rn. For
example, think ofR3 and the equationx1 + x2 + x3 =
1. The solution set of the equation is a plane passing
through(1, 0, 0), (0, 1, 0), and(0, 0, 1), perpendicular to
the vectora = (1, 1, 1).

11



So our solution set is the part of the positive octant ofRn

that is theintersection of them planes corresponding to
the constraints. In general, the intersection ofm planes
will be a space of dimensionn − m, if the planes are in
general position. This means that no two of them are
parallel and no three intersect in a space of dimension
more thann− 3.

The situation is easier to visualize if we transform the
problem once again, from standard form intoslack form.
Remember thatA is anm by n matrix andb is anm-
vector with b ≥ 0. By Gaussian operations, we can
change the equationAx = b to A′x = b′, where the
first m columns ofA′ form an identity matrix. (This is
the same as multiplying bothA andb on the left by the
inverse of the matrix formed by the firstm columns –
if these columns are not linearly independent we can re-
order the variables so that they are.)

12



Now we have the firstm variables each expressed as a
function of the lastn − m variables. So fori from 1
throughm, we have the (scalar) inequalityxi ≥ 0 and an
equationxi + ∑

j cjxj = bi, which gives us∑j cjxj ≤ bi, a
linear inequality in the lastn−m variables.

We havem constraints on thesen−m variables, each of
which has a solution space called ahalf-space, a plane
together with all the points on one side of it inRn−m.
The intersection of one or more half-spaces gives us a set
called apolyhedron, or a polytope if it happens to be
bounded. For example, inR3 if we havex1 ≥ 0, x2 ≥ 0,
x3 ≥ 0, andx1 + x2 + x3 ≤ 1, we define a polytope
that is a tetrahedron, with four vertices(0, 0, 0), (1, 0, 0),
(0, 1, 0), and(0, 0, 1).

13



Page 143 of the Adler notes (to be displayed in class on
a slide) has a picture of a more complicated polytope in
R3, arising from the following set of inequalities:

x1 + x2 + x3 ≤ 4

x1 ≤ 2

x3 ≤ 3

3x2 + x3 ≤ 6

These four inequalities are derived from a set of four
equations in seven variables. But of those seven vari-
ables, only three are independent – the standard-form
constraints define the other four in terms of them.

14



Now that we can see the polytope (or polyhedron) geo-
metrically, we can interpret the minimization of the ob-
jective function. It is a linear function of the variables in
the standard-form problem, which we may rewrite as a
function of then−m variables in the slack-form version
(since each of the other variables may be written in terms
of those).

A function of the formc · x, wherex is now an(n−m)-
vector, has constant planes that are each perpendicular to
the vectorc. If we imagine one of these planes moving
from one constant value ofc · x to another, we see that
it will sometimes intersect the feasible region’s polytope
and sometimes not. If and when it changes from inter-
secting to not intersecting, it does so at avertex of the
polytope – a point where at leastn − m of the planes
meet. It is possible that the plane will meet more than
one vertex (and the lines or faces between them) at once,
but it will necessarily hit a vertex.

15



If the feasible region is an unbounded polyhedron, the
objective function on it may be unbounded in one or both
directions. If it takes on all numbersy ≤ c for some
constantc, for example, then the minimization problem
has no solution – there is no minimum value because you
can always go lower.

But if the feasible region is bounded, or at least if the
value of the objective function is bounded below in the
case of a minimization problem, there will be a solution
to the problem and it will occur at a vertex or vertices.

This suggests a solution to the general linear program-
ming problem! Compute the location of all the vertices,
then calculate the objective function at each of them and
find the smallest value.

This is a valid method, but in general not an efficient one
because there might be an exponential number of ver-
tices. In the next lecture we’ll consider a more system-
atic method for searching the vertices to find one with a
minimum value.

16


