
CMPSCI611: Approximating MAX-CUT Lecture 20

For the next two lectures we’ll be seeing examples of
approximation algorithms for interestingNP-hard prob-
lems. Today we consider MAX-CUT, which we proved
to beNP-hard in Lecture 18. Our goal is to divide the
vertices of an undirected graphG into two setsA and
B, so as to maximize the number of edges that have one
edge inA and the other inB.

Here is a somewhat greedy algorithm that does reason-
ably well at approximating the maximum cut. Given any
two setsA andB, look at an arbitrary vertexv. Suppose
for the moment thatv is in A. Of the edges incident tov,
some go to other vertices inA and the others go toB. If
morevertices go toA thenB, consider what happens if
we movev into B. Our score goes up one for each edge
to an element ofA, and goes down one for each edge to
B, so all in all it goes up.

Thus our algorithm – starting withA = V andB = ∅,
keep switching any vertexv from A to B or vice versa
as long as it will increase the number of edges fromA to
B. If we reach a position where there is no suchv, return
that cut as the output.

1



Note that there is no reason a singlev might not go back
and forth fromA to B several times. But the algorithm
must terminate, because the count of edges across the
cut starts at0, increases by at least1 with each switch,
and ends at some value that is at moste. This analysis
also gives us a bound on the running time – we have at
moste rounds during which we might have to check all
n vertices and examine alle edges, so the total time is
O(e(e + n)).

How closely does this algorithm approximate the maxi-
mum? Consider anyA andB such that each vertex has at
least as many edges to the other set as it does to its own
set. That is, the fraction of cross edges at each vertex is at
least1/2. The fraction for the whole graph is a weighted
average of the fractions for each edge (where the weight
of each vertex is its degree), and soit must be at least
1/2. Thus we have a 2-approximation to the maximum,
because the fraction of edges across the maximum cut
can’t be any greater than1.

2



Can we do better? In 1995, using a different method
(“semidefinite programming”), Goemans and Williamson
found a poly-time way to approximate MAX-CUT within
1.1383. Can we get a poly-time approximation scheme?

There is a lovely archive of known results (as of about
2000) on approximation algorithms forNP-hard prob-
lems, located at:

www.nada.kth.se/˜viggo/wwwcompendium

There (atnode85.html ) we find that MAX-CUT is
NP-hard to approximate within 1.0684. Like VERTEX-
COVER, it is approximable to within one constant in
polynomial time but not to within another constant, un-
lessP = NP.

3



CMPSCI611: Approximating TSP Lecture 20

The traveling salesperson problemor TSP may be the
most famousNP-hard optimization problem. We have a
weighted complete graphG representingn cities, a solu-
tion is aHamilton circuit of G, and our goal is to find a
solution of minimum total weight.

It is NP-complete to decide whether an ordinary undi-
rected graph has a Hamilton cycle. The proof of this
is rather nice – given a 3-SAT instance, you construct
a graph where the only way to have a cycle reaching all
vertices is to pick a setting of then variables that satis-
fies the formula. (Sipser has a nice presentation of this
in Introduction to the Theory of Computation.) It stands
to reason that comparing Hamilton paths by score would
be at least as hard as finding one, and we can convert this
intuition to a formal proof.

4



Let G be an undirected graph, and define a weighted
complete undirected graphH with the same set ofn ver-
tices. Define the weight inH of (u, v) to be2 if (u, v) is
not an edge inG and1 if it is. Now a Hamilton cycle in
G corresponds to a Hamilton cycle inH of weightn, and
any other Hamilton cycle inH has weight more thann.
So the pair(H, n) is an achievable goal for TSP iffG is
in theNP-complete language HAM-CYCLE.

We can use this same construction to show that TSP is
difficult to approximate, even within a factor of, say,n.
GivenG as before, we formH with weight 1 for edges of
G and some weightz for non-edges ofG. Then Hamil-
ton cycles ofG have weightn in H, and other Hamil-
ton cycles ofH have weight at leastz + n − 1. If we
let z = n2, any approximation algorithm with ration
would have to distinguish these two cases and thus de-
cide HAM-CYCLE for G. How bad could we make the
approximation ratio? It isNP-hard to get withinz/n,
wherez is anything we can evenwrite downin polyno-
mial time.

5



However, it’s natural to consider the special case of TSP
where the weight function is somehow “reasonable”. The
triangle inequality is a restriction on a binary distance
functiond, saying that for any three verticesx, y, andz,

d(x, z) ≤ d(x, y) + d(y, z).

This is the defining property of ametric, so the restric-
tion of TSP to weight functions that satisfy the trian-
gle inequality is calledTriangle-TSP or Metric TSP or
MTSP. Note that our first reduction, with weight 1 for
edges and 2 for non-edges, gives us a weight function
onH that satisfies the triangle inequality. Thus MTSP is
still anNP-hard optimization problem.

6



But it is possible to approximate MTSP to within a con-
stant factor, using a technique based onEuler circuits
rather than Hamilton circuits. Remember that an Euler
circuit is one that visits all theedgesin a graph. In an
undirected graph, an Euler circuit exists iff the graph is
connected and every node has even degree. in a directed
graph, an Euler circuit exists iff the graph is strongly con-
nected and every vertex has in-degree equal to its out-
degree.

For our first approximation algorithm, consider a mini-
mum spanning treeT of the weighted complete graphH.
Now view this tree as a directed graph by replacing each
edge with a directed edge in each direction. The result is
a strongly connected directed graph with equal in-degree
and out-degree at every vertex. LetC be an Euler circuit
of this graph. Note that the total weight ofC is exactly
twice that ofT , because each edge ofT appears inC
exactly twice.

7



We can use this treeT and circuitC to get a relatively
low-weight Hamilton circuit inH, and to analyze how
close it is to the minimum weight circuit. Of course,
C itself is not a Hamilton circuit because it has2n − 2
edges, notn. However, we canshortenC in terms of
edges without increasing its total weight. Ifx, y, andz
are any three consecutive vertices inC, we can replace
the two edges(x, y) and(y, z) by the single edge(x, z),
and the triangle inequality tells us that the total weight
cannot increase. Does the resulting circuit still reach ev-
ery vertex? Yes, as long asy appears somewhere else on
C.

Thus we get a Hamilton circuit by using such shortcuts
to bypass any vertex that appears more than once, con-
tinuing as long as we can. The process stops when our
circuit has onlyn vertices. Since the weight ofC was at
most twice that ofT , and each bypass at worst keeps the
weight the same, we have a Hamilton circuitA of weight
at mostw(T ).

8



But what of the optimal circuit? It exists somewhere,
though we can’t find it, and we can reason about it. If we
remove any one edge from the optimal circuitO, we get
a path, which is among other things a connected acyclic
graph, a spanning tree, whose total weight is at most
w(O). SinceT is a minimum spanning tree, we thus
know thatw(T ) ≤ w(O). Sincew(A) ≤ 2w(T ), we
know that our approximation is within a factor of 2.

9



A simple improvement of this algorithm, due to Christofides
in 1976, gets a3/2 approximation rather than2. Again,
let T be a minimum spanning tree of the weighted con-
nected graphH. Let D be the set of nodes that have odd
degree inT – there may be as few as 2 or as many asn,
but there must be an even number (why?). LetM be a
minimum-weight matching onD, and note thatT ∪ M
is now a connected undirected graph with even degree at
every vertex. (Actually,T∪M is amultigraphin general,
because there is nothing stopping an edge from being in
bothT andM – in this case we keep two parallel copies
of the edge inT ∪M ).

To get our approximationA, we takeT ∪M and (if nec-
essary) apply shortcuts to bypass vertices that occur more
than once, as long as we can. This gets us to a Hamilton
circuit, with n nodes andn edges.

10



How good an approximation isA to the optimal TSP tour
O? As before, we know thatw(T ) is at mostw(O), be-
cause deleting an edge fromO gives a spanning tree.
What aboutM? M is a minimal matching onD, an
even-size set. Consider the optimal TSP tour onD. Us-
ing the triangle inequality, it’s easy to show that this tour
has weight at mostw(O). We can break this tour into
sets odd-numbered and even-numbered edges, and each
of these sets is amatchingonD. One of them must have
weight at mostw(O)/2, and thus theminimumweight
matching onD, M , has at most this weight.

This means that the weight ofT ∪M is at mostw(T ) +
w(M) ≤ w(O) + w(O)/2 = 3w(O)/2. As before, the
weight ofA can be no greater than this, soA is at worst
a 3/2 approximation to the minimum weight Hamilton
circuit in H.

11



Can this be improved farther? Checking the archive again,
we find no indication that it has been. The MIN-MTSP
problem is listed as being “APX-complete”, which means
that there exists some positive constantε such that it is
NP-hard to approximate it within1 + ε. There is refer-
ence to an explicitε for which this has been proved, but
since no one seems to want to talk about its specific value
it would seem to be very small.

When people think about the TSP, and when they con-
struct test instances of it, they often consider theEu-
clidean TSP problem, where the nodes are points in the
Euclidean plane and the weight of an edge is the Eu-
clidean distance between the two nodes. It turns out that
this version of the TSP decision problem is stillNP-hard
(though technicalities arise when trying to prove itNP-
complete, involving adding square roots).

12



For Euclidean TSP, there is apolynomial time approx-
imation schemedue to Arora. For any positive constant
ε, there is a polynomial-time algorithmfε that gets a1+ε
approximation. However, the running time offε depends
exponentiallyon 1/ε, so this is not afully polynomial
time approximation scheme.

13


