
CMPSCI611: The SUBSET-SUM Problem Lecture 18

We begin today with the problem we didn’t get to at the
end of last lecture – the SUBSET-SUM problem, which
we also saw back in Lecture 8. The input to SUBSET-
SUM is a set of numbers{a1, . . . , an} and a target num-
bert, and we ask whether there is a subset of the numbers
that add exactly tot. Using dynamic programming, we
showed that we could decide this language in time that is
polynomial inn ands, the sum of all theai.

Now we allow the numbers to get larger, so that they now
might ben bits long. The problem is still inNP, because
we can guess a subset by guessing a bitvector, add the
numbers in the set, and verify that we gett. But it’s no
longer clear that we are inP, and in fact we will now see
that the general problem isNP-complete.

We reduce 3-SAT to SUBSET-SUM (with large num-
bers). We first assume that every clause in our input for-
mula has exactly three literals – we can just repeat literals
in the same clause to make this true. Our numbers will be
represented in decimal notation, with a column for each
of the v variables and a column for each clause in the
formula.

1



We’ll create an itemai for each of the2v literals. This
item will have a 1 in the column for its variable, a 1 in
the column of each clause where the literal appears, and
zeroes everywhere else. We also have two items for each
clause, each with a 1 in the column for that clause and
zeroes everywhere else. The target number has a 1 for
each variable column and a 3 for each clause column.

We now have to prove that there is a subset summing to
the target iff the formula is satisfiable. If there is a sat-
isfying assignment, we choose the item for each literal
in that assignment. This has one 1 in each variable col-
umn, and somewhere from one to three 1’s in each clause
column. Using extra items as needed, we can reach the
target.

Conversely, if we reach the target wemusthave chosen
one item with a 1 in each variable column, so we have
pickedv variables forming an assignment. Since we have
three 1’s in each clause column and at most two came
from the extra items, we must have at least one 1 in each
clause column from our assignment, making it a satisfy-
ing assignment.

2



Given a problem with numerical parameters, we say that
it is pseudopolynomialif it becomes polynomial when
those parameters are given in unary. If it isNP-complete
with parameters given in unary, we say that it isstrongly
NP-complete. The SUBSET-SUM problem is pseudopoly-
nomial, but all our graph problems are stronglyNP-complete.

Recall that the KNAPSACK problem is similar to SUBSET-
SUM but has avalue for each item as well as itsweight.
We are asked to find whether a set of at least a given value
exists with at most a given weight. Since SUBSET-SUM
is an identifiable special case of KNAPSACK (where weight
and value are both equal), we know that SUBSET-SUM
≤p KNAPSACK. Since KNAPSACK (as a decision prob-
lem) is in NP, it is NP-complete. The associated opti-
mization problem is thusNP-hard.

3



CMPSCI611: The MAX-CUT Problem Lecture 18

Earlier we looked at the problem of taking an undirected
graph and finding theminimum cut in it – a partition of
the vertices into two sets such that the number of edges
with one endpoint in each set was as small as possible.
We solved this in polynomial time in two different ways
– using the network flow algorithm to find the minimum
cut between one vertexs and each other vertext, then
taking the minimum over allt, and Karger’s randomized
algorithm.

What about the problem of finding themaximum cut?
For example, each edge might represent a difference be-
tween two objects, and we might want to divide the ob-
jects in two so as to maximize the number of differnences.
Despite the obvious similarity to the min-cut problem,
finding the maximum cut (as an optimization problem) is
NP-hard. In particular, the language MAX-CUT, the set
of all pairs(G, k) whereG has a cut of sizeat least k, is
NP-complete.

4



Once again it is clear that this decision problem is in
NP. We can guess a partition (as a bitvector of length
n), count the edges between the two sets, and accept if
the number is at leastk. To prove MAX-CUT isNP-
complete, we will reduce from NAE-3-SAT, one of the
problems we proved to beNP-complete last lecture.

Remember that NAE-3-SAT is the set of 3-CNF formulas
ϕ for which there exists a setting of the variables giving
each clauseeither one or twotrue literals, not either zero
or four. (The initials stand for “not all equal 3-SAT”.)
So given such aϕ, we need to produce a graphG and a
numberk such thatG has a cut of sizek iff ϕ is NAE-
satisfiable.

5



Before we begin, we make two modifications toϕ if nec-
essary:

• If any clause contains both a literal` and its negation
¬`, we delete it – it was guaranteed to be satisfied
anyway.

• If any two clauses share two of there three literals,
we replace them by four clauses, introducing two new
variables, that don’t have this property and are NAE-
satisfiable iff the original two clauses were. In partic-
ular, if (a∨ b∨ c) and(a∨ b∨ d) are both clauses, we
replace them by(a∨b∨c), (a∨x∨d), (b∨¬x∨y), and
(¬b∨x∨y). Whichever wayy is set, NAE-satisfying
the last two clauses forcesx to be set the same way
asb.

6



Now we can construct our graph. Say thatϕ, as modified,
hasv variables andm clauses.G will have 2v vertices,
one for each literal. It will havev + 3m edges:

• An edge betweeǹand¬` for each literal̀ (v edges),
and

• A triangle of edges connecting the three literals of
each clause.

Our conditions onϕ mean that no edge is added both
ways, and no two of the triangles share an edge. Finally,
we setk to bev + 2m.

We must prove thatϕ is NAE-satisfiable iffG has a cut
of size at leastk. First assume that there is a setting that
NAE-satisfiesϕ. We look at the cut that separates the
true literals of this setting from the false literals. Every
one of thev negation edges goes across this cut. Every
triangle inG consists of either two true literals and one
false one, or two false and one true. Thus exactly two
of the three edges of the triangle cross the cut. So the
number of edges crossing the cut is exactlyv + 2m, or k.

7



Now assume that we have a partition of the2v vertices
into two sets such that there arek edges across the cut.
We must prove that there is a setting of the variables that
NAE-satisfies all the clauses. Look at the two categories
of edges:

• The only way that all of thev negation edges cross
the cut is if each pair of literals is divided between
the two sets, so that each set hasv literals from dif-
ferent variables and thus represents a setting of the
variables.

• Each of them triangles has either zero edges crossing
the cut, if all three nodes are in the same set, or two
edges crossing it, if the three nodes are split two and
one.

Thus the maximum possible number of edges crossing
the cut isv+2m, and this is achieved only if the cut repre-
sents a setting, and this setting contains either one or two
literals from each clause. This is exactly the definition of
NAE-satisfyingϕ. (Note that if a setting NAE-satisfies
ϕ, so does the setting obtained by negating all its literals.)
We have completed the reduction and shown that NAE-
3-SAT≤p MAX-CUT and therefore that MAX-CUT is
NP-complete.

8



On HW#4 you will consider the related MAX-BISECTION
and MIN-BISECTION problems, which are similar to
MAX-CUT and MIN-CUT except that in the bisection
problems the cut is required to have an equal number of
vertices in each set.

9



CMPSCI611: Three-Dimensional Matching Lecture 18

We now turn to an importantNP-complete problem,THREE-
DIMENSIONAL-MATCHING (3DM) . This problem
is useful as a base for reductions, is an identifiable special
case of a number of other problems, and has an interest-
ing NP-completeness proof.

Let X, Y , andZ be disjoint sets ofn elements each, and
let T be a set of triples inX×Y ×Z. The 3DM problem
is the set of tuples(X,Y, Z, T ) such that there is a set of
n triples in T that together include each item inX, Y ,
andZ exactly once.

The 3DM problem generalizes the bipartite perfect match-
ing problem, which we know to be inP. There we have
two setsX andY of sizen and a set of edges that can
be viewed as a subset ofX × Y , and we want a set ofn
edges that together include every vertex.

Clearly 3DM is inNP. We will prove it to beNP-complete
by reducing 3-SAT to it.

10



Let ϕ be a 3-CNF formula withm clauses andv vari-
ables. We’ll set up a setS of 6mv elements and a bunch
of three-element subsets of this set, such that we can
makeS the union of exactly2mv 3-sets iffϕ is satsifi-
able. This is actually an instance of the related EXACT-
COVER-BY-3-SETS problem – later we’ll divideS into
X, Y , andZ and make our 3-sets into triples.

The elements ofS are as follows:

• 4m elements for each variable, acore of 2mv ele-
ments and2mv others calledtips. As I’ll show on the
board, we’ll think of the core as arranged in a circle,
with the tips in another circle outside it.

• A pair of clause elementsfor each clause,2m in all.

• m(v− 1) pairs ofcleanup elements, making2m(v−
1) in all.

11



Now to define the 3-sets inT :

• Two sets ofm 3-sets for each variable. One set cov-
ers the core elements and theodd-numberedtips, the
other the core elements and theeven-numbered tips.
There is no way to cover the whole core without tak-
ing either one set or the other. Covering the odds will
correspond to setting that variable true, covering the
evens to setting it false.

• For each clauseCi = (`1 ∨ `2 ∨ `3), we have three 3-
set, each one covering the two clause elements and a
tip corresponding to one of thè’s. If `j is the variable
xk, for example, the corresponding tip is the2i’th tip
for variablexk. If `j is ¬xk, the corresponding tip is
the2i + 1’st.

• For each cleanup clause and each tip, we have a 3-set
containing those three elements.

12



We’ll sketch the proof that a successful cover of all the el-
ements by 3-sets inT corresponds to an assignment that
satisfiesϕ. Suppose we have the asignment. We choose
sets to cover the core elements for each variable as de-
scribed above, leavingeither all the odd tips or all the
even tips uncovered. For each clause, we pick a literal
that is assigned to be true and choose the 3-set that covers
the two clause elements and the corresponding tip (which
is uncovered because of the assignment). Then we cover
the other tips and the cleanup elements with the 3-sets
that include the cleanup elements.

Conversely, suppose we have a successful covering. To
cover all the core elements, we must in effect pick an as-
signment to the variables. To cover the clause elements,
we must also covern tips, in such a way that the tips cho-
sen correspond to literals that are set to true. This gives
us a satisfying assignment. The clause and core elements
can be covered in no other way, so the assignment must
exist if the covering does.

Finally, we splitS into X, Y , andZ to make these 3-
sets into triples.Z is exactly the set of tips. The clause
element and cleanup element pairs each have one element
of X and one ofY . The core elements are alternatively
from X and fromY , as I’ll show on the board.

13



Here are some of the related problems that can be shown
to beNP-complete by reduction from 3DM:

• SET-COVER: GivenS and a collection of subsets of
S, and a numberk, is there a collection ofk of the
subsets that union together to giveS?

• SET-PACKING: GivenS, a collection of subsets, and
k, is there a pairwise disjoint collection ofk of the
subsets?

• EXACT-COVER-BY-3-SETS: As above.

• PARTITION-INTO-TRIANGLES: Given an undirected
graph with3n vertices, is there a set ofn disjoint tri-
angles in the graph that include all the vertices?

• PARTITION-INTO-2-PATHS: Given an undirected graph
with 3n vertices, are theren vertex disjoint paths of
length 2 that together include all the vertices?

• STEINER-TREE: Given a weighted graph, a division
of the vertices into “required” and “optional”, and a
target cost, is there a tree that includes all the required
vertices and has total cost less than the target?

14



Clearly all these problems are inNP. For many of them
problems, 3DM is an identifiable special case and so the
reduction just uses the identity map. In the other cases,
except for STEINER-TREE, the reduction is simple.

STEINER-TREE is an extension of MST – MST is the
identifiable special case where there are no optional ver-
tices. The Steiner tree problem is extensively studied as a
geometric problem, where the edge weights are distances
in the plane. It is alsoNP-complete in the geometric ver-
sion, with either Euclidean or Manhattan distances.

15



CMPSCI611: More NP-Complete Problems Lecture 18

We can arrange knownNP-complete functions in a tree,
based on the reductions used to prove themNP-complete.
At the end of Chapter 7, the Adler notes have such a tree
(unreadable in the original version of the notes). We’ll
repeat it here and discuss some of the problems:

• 3-SAT≤p NAE-3-SAT≤p MAX-CUT ≤p MIN-BISECTION
≤p MAX-BISECTION

• 3-SAT≤p CLIQUE≤p IND-SET≤p VERTEX-COVER
≤p HAM-CYCLE ≤p LONGEST-PATH

• HAM-CYCLE ≤p TSP

• 3-SAT≤p SUBSET-SUM≤p KNAPSACK

• 3-SAT≤p 3DM ≤p STEINER-TREE

Of course thereexistsa reduction from anyNP-complete
problem to any other, so a tree like this only represents a
choice as to which reductions are easier.

In the rest of this lecture, we’ll look at some of the prob-
lems on this list. In many cases, we have pairs of similar
problems, one of which is inP and the other of which is
NP-complete.

16



We’ve mentioned MAX-CUT (NP-complete) and MIN-
CUT (in P).

The HAM-CYCLE problem asks whether there is a cycle
that contains all the vertices. This contrasts with EULER-
CYCLE, where the cycle (in a multigraph) must contain
all edges. The latter is inP.

The problem of finding a LONGEST-PATH froms to t in
an undirected graph is easily proved to beNP-complete
by reduction from HAM-CYCLE. By contrast, we can
find a SHORTEST-PATH inP by breadth-first or matrix
powering.

The famous TRAVELING-SALESPERSON (TSP) prob-
lem is easily provedNP-complete (orNP-hard as an op-
timization problem) by reduction from HAM-CYCLE.

Sometimes the parameter of a problem is very important.
While 3-SAT and 3DM areNP-complete, we have seen
that 2DM is inP and 2-SAT is easily proved so.

EDGE-COVER, where we ask for a minimum-sized set
of edges to cover every vertex, is inP, in contrast with
VERTEX-COVER. Finally, MST generalizes to theNP-
complete STEINER-TREE problem.

17


