
CMPSCI611: NP Completeness Lecture 17

Essential facts aboutNP-completeness:

• Any NP-complete problem can be solved by a simple,
but exponentially slow algorithm.

• We don’t have polynomial-time solutions to anyNP-
complete problem.

• We can prove that eitherall NP-complete solutions
have polynomial-time solutions, ornoneof them do.

• It is generally believed that none of them do. But
proving this would require solving theP versus NP
problem, one of the best known unsolved problems
in mathematics, much less theoretical computer sci-
ence.

NP-completeness is a property ofdecision problems. It
can be used to prove that other types of problems areNP-
hard, which means that (unlessP = NP) they have no
polynomial-time solutions. These includesearch, opti-
mization, andapproximation problems.

1

Definition: The classP is the set of decision problems
for which there exists an algorithm solving them inO(nk)
time for some constantk.

Definition: A formal languageA is in NP if there exists
another languageB in P, such that for any stringx, x is
in A iff there exists a stringy, with |y| = |x|O(1), such
that(x, y) is in B.

An equivalent, more algorithmic definition ofNP is as
follows. An NP-procedure consists of aguess phase
and averification phase. Given an inputx, the guess
phase chooses an arbitrary stringy such that|y| = |x|O(1).
The verification phase is an algorithm that takes bothx
andy as input and returns a bit. We say thatx is in the
language of theNP-procedure iffit is possiblefor the
procedure to guess ay making the verification phase out-
put “true”.

Thereis an obvious deterministic decision procedure for
anyNP language – simply cycle through all possible strings
y and see whether the verification procedure accepts(x, y).
The problem is that there are2nO(1)

possibley’s, of course.
Our question is whether there is a better way to decide
membership in theNP language, one that might run in
polynomial time.

2

Proving a language to be inNP is generally simple. We
need to define a string to be guessed, and define a poly-
time verification procedure that accepts the input and a
guess iff the guessprovesthat the input is in the language.

We need to determine relationships among the languages
in NP, using the notion ofreduction. We want to show
that if problemB is in P, then so is problemA. One way
to do this is to describe an algorithm forA would run
in polynomial time if it were allowed to make calls to a
hypothetical poly-time algorithm to decide membership
in B. This is called aCook reduction. For definingNP-
completeness, though, we will need a slightly different
notion of reduction.

Let A andB be two formal languages, possibly over dif-
ferent alphabets. AKarp reduction from A to B is a
poly-time computable functionf such that for any string
x, x ∈ A if and only if f (x) ∈ B. If such a reduction ex-
ists we say thatA is poly-time reducible to B and write
“A ≤p B”. We also sometimes read this as “A is no
harder thanB”.

3

Two languagesA andB are said to bep-equivalent if
bothA ≤p B andB ≤p A. The relation≤p is a partial
order on the equivalence classes. We are interested in the
maximal equivalence class inNP:

Definition: A languageB is NP-complete if (1) it is in
NP, and (2) for any languageA in NP, A ≤p B.

Thus theNP-complete languages, if they exist, are the
hardestlanguages inNP. It should be easy to see that
they form an equivalence class, and that if anyNP-complete
language is also inP, it follows thatP = NP.

If a language isNP-complete, then, we have strong evi-
dence that it is not inP. We can use theNP-completeness
of a language to talk about non-decision problems, even
though by definition these cannot beNP-complete.

Definition: A problemX (with boolean output or other-
wise) is said to beNP-hard if there is a Cook reduction
from X to someNP-complete problemB. That is, there
is a poly-time algorithm, with access to a hypothetical
poly-time algorithm forX, that decidesB.

It should be clear that ifX is NP-hard and there actually
is a poly-time algorithm forX, thenP = NP.

4

Our general methodology will be to develop a library
of NP-complete problems. Once we have one problem,
there is a straightforward way to get more:

Lemma: Let B be anNP-complete language andA be a
language. If we prove:

• A ∈ NP

• B ≤p A

then we may conclude thatA is NP-complete.

But how do we start this process? In CMPSCI 601, we
prove theCook-Levin Theorem, that the language SAT
is NP-complete. Last time, we gave an unconditional
proof that a particulargeneric NP languageisNP-complete.
We’ll still need the Cook-Levin Theorem, because SAT
is a much more convenient starting place to build up a
library of NP-complete languages.

5

CMPSCI611: SAT and 3-SAT Lecture 17

Remember that a boolean formula is defined to besatis-
fiable if there is at least one setting of its input variables
that makes it true. The language SAT is the set of boolean
formulas that are satisfiable.

Recall that a boolean formula is inconjunctive normal
form (CNF) if it is the AND of zero or moreclauses,
each of which is the OR of zero or moreliterals. A for-
mula is in3-CNF if it is in CNF and has at most three
literals in any clause. The language CNF-SAT is the set
of CNF formulas that are satisfiable, and the language
3-SAT is the set of 3-CNF formulas that are satisfiable.

Note that 3-SAT is a subset of CNF-SAT, which is a sub-
set of SAT. In general, ifA ⊆ B, we can’t be certain that
A ≤p B. Although theidentity function maps elements
of A to elements ofB, we can’t be sure that it doesn’t
map a non-element ofA to an element ofB. But here we
know more – we can easily test a formula to see whether
it is in CNF or 3-CNF. To reduce 3-SAT to SAT, for ex-
ample, we map a formulaϕ to itself if it is in 3-CNF,
and to0 if it is not. A similar reduction works to show
A ≤p B wheneverA is such anidentifiable special case
of B – that is, whenA = B ∩ C andC ∈ P.

6

The Cook-Levin Theorem tells us that SAT isNP-complete,
essentially by mapping an instance of the genericNP
problem to a formula that says that a particular string is
a witness for a particularNP-procedure on a particular
input. (Recall that ifA is anNP language defined so that
x ∈ A iff ∃y : (x, y) ∈ B, we cally variously awitness,
proof, or certificate of x’s membership inA.)

We’d like to show that CNF-SAT and 3-SAT are alsoNP-
complete. It’s clear that they are inNP, but the easy spe-
cial case reduction doesnot suffice to show themNP-
complete. We can reduce 3-SAT to SAT, but what we
need is to reduce theknownNP-complete language, SAT,
to the language we want to show to beNP-complete, 3-
SAT.

On HW#4 I’ll have you work through the general re-
duction from SAT to 3-SAT. Here, I’ll present the eas-
ier reduction from CNF-SAT to 3-SAT. (The proof of
the Cook-Levin Theorem given in CMPSCI 601 actually
shows directly that CNF-SAT isNP-complete.)

7

Let’s now see how to reduce CNF-SAT to 3-SAT. We
need a functionf that takes a CNF formulaϕ, in CNF,
and produces a new formulaf (ϕ) such thatf (ϕ) is in 3-
CNF and the two formulas are either both satisfiable or
both unsatisfiable. If we could makeϕ andf (ϕ) equiv-
alent, this would do, but there is no reason to think that
an arbitrary CNF formula will even have a 3-CNF equiv-
alent form. (Every formula can be translated into CNF,
but not necessarily into 3-CNF.)

Instead we will makef (ϕ) have a different meaning from
ϕ, and even a different set of variables. We will add vari-
ables tof (ϕ) in such a way that a satisfying setting of
both old and new variables off (ϕ) will exist if and only
if there is a satisfying setting of the old variables alone in
ϕ. In fact the old variables will be set the same way in
each formula.

Becauseϕ is in CNF, we know that it is the AND of
clauses, which we may name(`11 ∨ . . . ∨ `1k1), (`21 ∨
. . . ∨ `2k2),. . .(`1m ∨ . . . ∨ `mkm), where thè ’s are each
literals. For each of these clauses inϕ, we will make one
or more 3-CNF clauses inf (ϕ), possibly including new
variables, so that the one clause inϕ will be satisfied iff
all the corresponding clauses inf (ϕ) are satisfied.

8

So let’s consider a single clause`1∨. . .∨`k in ϕ. If k ≤ 3,
we can simply copy the clause over tof (ϕ), because it is
already suitable for a CNF formula. What ifk = 4? We
can add one extra variable and make two clauses:(`1 ∨
`2 ∨ x1) and(¬x1 ∨ `3 ∨ `4). It’s not too hard to see that
both of these clauses are satisfied iff at least one of the
`’s is true. If `1 or `2 is true, we can afford to makex1

false, and if̀ 3 or `4 is true, we can makex1 true.

The general construction fork > 4 is similar. We have
k − 2 clauses andk − 3 new variables: The clauses are
(`1 ∨ `2 ∨ x1), (¬x1 ∨ `3 ∨ x2), (¬x2 ∨ `4 ∨ x3), and
so on until we reach(¬xk−4 ∨ `k−2 ∨ xk−3) and finally
(¬xk−3 ∨ `k−1 ∨ `k).

If we satisfy the original clause with some`i, this satisfies
one of the new clauses, and we can satisfy the others by
making all thexi’s before it true and all those after it
false. Conversely, if we satisfy all the new clauses, we
cannot have done it only withxi’s because there are more
clauses thanxi’s and eachxi only appears at most once
as true and at most once as false, and so can satisfy at
most one clause.

9

Since this reduction is easily computable in polynomial
time, it shows that CNF-SAT≤p 3-SAT, and thus (with
the quoted result that CNF-SAT isNP-complete) that 3-
SAT isNP-complete.

3-SAT is often the most convenient problem to reduce to
something else, but other variants of SAT are also some-
times useful. One we’ll use later isnot-all-equal-SAT or
NAE-SAT. Here the input is a formula in 3-CNF, but the
formula is “satisfied” only if there is both a true literal
and a false literal in each clause.

Let’s prove that NAE-SAT isNP-complete. Is it inNP?
Yes, if we guess a satisfying assignment it is easy (in lin-
ear time) to check the input formula and verify that there
is a true literal and a false literal in each clause. So we
need to reduce a knownNP-complete problem to NAE-
SAT – we’ll choose 3-SAT itself. Again we’ll transform
each old clause into the AND of some new clauses, in
this case three of them.

10

Given the clausè1 ∨ `2 ∨ `3, we introduce two new vari-
ablesx andy that appear only in the new clauses for this
clause, and a single new variableα that appears several
times. The three new clauses are

(`1 ∨ `2 ∨ x) ∧ (¬x ∨ `3 ∨ y) ∧ (x ∨ y ∨ α).

We must show that the three new clauses are jointly NAE-
satisfiable iff the original clause is satisfiable in the ordi-
nary way. First, we assume that the old clause is satisfied
and show that we can choose values forx, y, andα to
NAE-satisfy the new clauses. We makeα true (for all the
clauses in the formula) and consider the seven possibili-
ties for the values of̀1, `2, and`3. In each of the seven
cases, we can setx andy, not both true, to NAE-satisfy
the three new clauses – we’ll check this on the board.

11

Now assume that the three new clauses are NAE-satisfied
– we will show that at least one of thèi’s is true. First
assume thatα is true, because if the new formula is NAE-
satisfied withα false we can just negate every variable in
the formula and get a setting that NAE-satisfies all the
clauses but hasα true.

If α is true, then eitherx or y must be false. Ifx is false,
then either̀ 1 or `2 must be true. Ify is false andx is true,
then`3 must be true. So one of the three`’s must be true,
and the original clause is satisfied in the ordinary way.

12

CMPSCI611: CLIQUE and VERTEX-COVER Lecture 17

So far we’ve seen that several problems in logic areNP-
complete. In fact there areNP-complete problems in a
huge array of domains – we’ll next look at some prob-
lems ingraph theory, similar to some problems we’ve
already solved in polynomial time.

Let G be an undirected graph. Aclique in G is a setA
of vertices such that all possible edges between elements
of A exist inG. Any vertex forms a clique of size 1, the
endpoints of any edge form a clique of size 2, and any
triangle is a clique of size 3.

The language CLIQUE is the set of pairs(G, k) such that
G is an undirected graph that contains some clique of size
k. It should be clear that CLIQUE is in the classNP. Our
NP-procedure guesses an arbitrary setA of vertices (by
guessing a bitvector of lengthn). Then the verification
phase checks thatA has size exactlyk and that there is
an edge between every pair of vertices inA.

13

We’ll prove CLIQUE to beNP-complete by reducing 3-
SAT to it. Recall that this means defining a function from
3-CNF formulas to graph-integer pairs, such that satisfi-
able formulas are mapped to pairs(G, k) such thatG has
ak-clique and unsatisfiable formulas are mapped to pairs
whereG does not have ak-clique.

The essential element of any reduction is a correspon-
dence between the witnesses of the twoNP-problems.
The 3-CNF formula is satisfied or not satisfied by a bitvec-
tor of lengthn, and the possible cliques are also denoted
by bitvectors. We want to arrange the graph so that a sat-
isfying instance corresponds to ak-clique and vice versa,
and we get to pickk for our convenience.

Here’s the construction. We have a node for eachappear-
ance of a literal in the formula. So if there arem clauses,
each withki literals, the number of vertices in the graph
is the sum from 1 tom of ki. Now we need edges. We
place an edge between nodesx andy if they refer to lit-
erals thatoccur in different clausesand arenot in conflict
(aren’t negations of one another). We setk to bem, the
number of clauses.

14

Nodes:Appearances of literals in clauses

Edges: Pairs of nodes that are in different clauses and
not in conflict.

We claim that the 3-CNF formula is satisfiable iff there is
anm-clique in the graph. First assume that there is a sat-
isfying assignment, which means that there is at least one
literal in each clause that is set true. Fix a set containing
exactly one true literal in each clause. Them nodes cor-
responding to these literals must form a clique. No two
of them are in the same clause, and no two of them can
be in conflict, so all possible edges between then exist.

Conversely, suppose that we have anm-clique in the graph.
The m nodes must occur inm different clauses, since
edges only connect nodes in different clauses. Because
them nodes also contain no conflicts, we can construct a
setting of the variables consistent with all those literals.
(We may have to arbitrarily set variables that don’t occur
in the set either as true or as false.) This setting makes
at least one literal in each clause true, so it satisfies the
formula.

15

With some easy reductions, we can use CLIQUE to prove
some similar problems to beNP-complete.

Again letG be an undirected graph. A set of verticesA
is anindependent setif there arenoedges inG between
vertices inA. The language IND-SET is the set of all
pairs(G, k) such that there exists an independent set of
sizek in G. Clearly IND-SET is inNP, because we can
guess the setA, verify its size, and verify that it contains
no edges.

We prove IND-SET to beNP-complete by reducing CLIQUE
to it, now that we know CLIQUE to beNP-complete.
This reduction will be a function that takes pairs(G, k)
to pairs(H, `) such thatG has a clique of sizek iff H has
an independent set of size`.

But this is easy! The problems are very similar, so much
so that we can giveH the same set of vertices asG and
arrange that a setA is a clique inG iff it is an independent
set inH. How do we do this? We want to map sets with
all the edges to sets with none of the edges, so we just
makeH the complementof G – the graph that has an
edge(x, y) exactly when that edge isnot an edge ofG.
Then the function taking(G, k) to (H, k) is the desired
reduction.

16

Another similar problem is VERTEX-COVER. A setA
of nodes of an undirected graphG is a vertex cover if
every edge ofG has at least one endpoint inA. The lan-
guage VERTEX-COVER is the set of pairs(G, k) such
thatG has a vertex cover of sizek. As before, it is clear
that VERTEX-COVER is inNP.

The Adler notes give a direct reduction from 3-SAT to
VERTEX-COVER, which is very similar to the reduction
from 3-SAT to CLIQUE. But we don’t need to use this
reduction, because it’s very easy to reduce CLIQUE or
IND-SET to VERTEX-COVER and thus use our previ-
ous work to prove VERTEX-COVER to beNP-complete.

If A ⊆ V is a vertex cover inG, look at the setV \ A of
nodesnot in A. There are no edges between these nodes,
since every edge has at least one endpoint inA. SoV \A
is an independent set – in fact it is an independent setiff
A is a vertex cover.

So G has a vertex cover of sizek iff it has an indepen-
dent set of sizen − k. Thus the function taking(G, k)
to (G, n− k) is a reduction from IND-SET to VERTEX-
COVER, proving that the latter problem isNP-complete.

17

We don’t want to get carried away with this sort of ar-
gument, though. Consider the language NON-CLIQUE,
defined to be the set of pairs(G, k) such thatG doesnot
have a clique of sizek. Is this problemNP-complete?

In all likelihood, it is not. A Karp reduction must take
yes-instances of one problem to yes-instances of the other,
so the identity map is not a Karp reduction. In fact it’s not
at all clear that NON-CLIQUE is inNP, because there is
nothing that we can guess to prove that a clique doesnot
exist.

18

We define a classco-NPto be the set of languages whose
complements are inNP. (Note that this is quite different
from the complement operation taking us from CLIQUE
to IND-SET.) We can defineco-NP-completeness anal-
ogously toNP-completeness, and see that a language is
co-NP-complete iff its complement isNP-complete. Could
a language be both? It follows easily from the definitions
that if there is,NP andco-NP are the same class. This
is considered unlikely, though not quite as unlikely asP
andNP being the same.

A Cookreduction is allowed to take the answer of a query
and negate it, so there is a simple Cook reduction from
CLIQUE to NON-CLIQUE. (To decide whether(G, k)
is in CLIQUE, determine whether the same pair is in
NON-CLIQUE and reverse the answer.) So theco-NP-
complete problems are allNP-hard, though probably not
NP-complete.

A final note – if we insist thatk or n − k be a constant,
CLIQUE and these other problems become solvable inP,
because we now have time to guess all possible cliques
(or independent sets, or vertex covers). Sometimes an
identifiable special case of anNP-complete problem is
easier.

19

CMPSCI611: The SUBSET-SUM Problem Lecture 17

For our final problem today, we revisit the SUBSET-SUM
problem – the input is a set of numbers{a1, . . . , an} and
a target numbert, and we ask whether there is a sub-
set of the numbers that add exactly tot. Using dynamic
programming, we showed that we could decide this lan-
guage in time that is polynomial inn ands, the sum of
all theai.

Now we allow the numbers to get larger, so that they now
might ben bits long. The problem is still inNP, because
we can guess a subset by guessing a bitvector, add the
numbers in the set, and verify that we gett. But it’s no
longer clear that we are inP, and in fact we will now see
that the general problem isNP-complete.

We reduce 3-SAT to SUBSET-SUM (with large num-
bers). We first assume that every clause in our input for-
mula has exactly three literals – we can just repeat literals
in the same clause to make this true. Our numbers will be
represented in decimal notation, with a column for each
of the v variables and a column for each clause in the
formula.

20

We’ll create an itemai for each of the2v literals. This
item will have a 1 in the column for its variable, a 1 in
the column of each clause where the literal appears, and
zeroes everywhere else. We also have two items for each
clause, each with a 1 in the column for that clause and
zeroes everywhere else. The target number has a 1 for
each variable column and a 3 for each clause column.

We now have to prove that there is a subset summing to
the target iff the formula is satisfiable. If there is a sat-
isfying assignment, we choose the item for each literal
in that assignment. This has one 1 in each variable col-
umn, and somewhere from one to three 1’s in each clause
column. Using extra items as needed, we can reach the
target.

Conversely, if we reach the target wemusthave chosen
one item with a 1 in each variable column, so we have
pickedv variables forming an assignment. Since we have
three 1’s in each clause column and at most two came
from the extra items, we must have at least one 1 in each
clause column from our assignment, making it a satisfy-
ing assignment.

21

Given a problem with numerical parameters, we say that
it is pseudopolynomialif it becomes polynomial when
those parameters are given in unary. If it isNP-complete
with parameters given in unary, we say that it isstrongly
NP-complete. The SUBSET-SUM problem is pseudopoly-
nomial, but all our graph problems are stronglyNP-complete.

Recall that the KNAPSACK is similar to SUBSET-SUM
but has avaluefor each item as well as itsweight. We are
asked to find whether a set of at least a given value exists
with at most a given weight. Since SUBSET-SUM is an
identifiable special case of KNAPSACK (where weight
and value are both equal), we know that SUBSET-SUM
≤p KNAPSACK. Since KNAPSACK (as a decision prob-
lem) is in NP, it is NP-complete. The associated opti-
mization problem is thusNP-hard.

22

