CMPSCI611: NP Completeness Lecture 17

Essential facts aboldP-completeness:

e Any NP-complete problem can be solved by a simple,
but exponentially slow algorithm.

e \We don’t have polynomial-time solutions to alyP-
complete problem.

e \We can prove that eithall NP-complete solutions
have polynomial-time solutions, ooneof them do.

e It is generally believed that none of them do. But
proving this would require solving thié versus NP
problem, one of the best known unsolved problems
In mathematics, much less theoretical computer sci-
ence.

NP-completeness is a property @écision problems It
can be used to prove that other types of problem$ife
hard, which means that (unled3 = NP) they have no
polynomial-time solutions. These includearch opti-
mization, andapproximation problems.

Definition: The classP is the set of decision problems
for which there exists an algorithm solving thenCiin*)
time for some constarit.

Definition: A formal languageA is in NP if there exists
another languag® in P, such that for any string, x is
in A iff there exists a string, with |y| = |2|°Y), such
that(x,y) isin B.

An equivalent, more algorithmic definition &P Is as
follows. An NP-procedure consists of aguess phase
and averification phase Given an inputr, the guess
phase chooses an arbitrary stringuch thaty| = 2|9,
The verification phase is an algorithm that takes hoth
andy as input and returns a bit. We say thais in the
language of theNP-procedure iffit is possiblefor the
procedure to guessiamaking the verification phase out-
put “true”.

Thereis an obvious deterministic decision procedure for
anyNP language — simply cycle through all possible strings
y and see whether the verification procedure acdepis.

The problem is that there are”" possibley’s, of course.

Our question is whether there is a better way to decide
membership in thé&lP language, one that might run in
polynomial time.

Proving a language to be MP is generally simple. We
need to define a string to be guessed, and define a poly-
time verification procedure that accepts the input and a
guess iff the guegzoveshat the input is in the language.

We need to determine relationships among the languages
In NP, using the notion ofeduction. We want to show
thatif problemB is in P, then so is probleml. One way

to do this is to describe an algorithm far would run

In polynomial time if it were allowed to make calls to a
hypothetical poly-time algorithm to decide membership
In B. This is called a&Cook reduction. For definingNP-
completeness, though, we will need a slightly different
notion of reduction.

Let A andB be two formal languages, possibly over dif-
ferent alphabets. Aarp reduction from A to B is a
poly-time computable functioii such that for any string
z,x € Aifand onlyif f(x) € B. If such a reduction ex-
ISts we say tha#l is poly-time reducible to B and write
“A <, B". We also sometimes read this ad ‘is no
harder thanB”.

Two languagesd and B are said to bg-equivalent if
bothA <, BandB <, A. The relation<, is a partial
order on the equivalence classes. We are interested in the
maximal equivalence class MP:

Definition: A languageB is NP-complete if (1) itis in
NP, and (2) for any languagé in NP, A <, B.

Thus theNP-complete languages, if they exist, are the
hardestlanguages IrNP. It should be easy to see that
they form an equivalence class, and that if &li8rcomplete
language is also iR, it follows thatP = NP.

If a language INP-complete, then, we have strong evi-
dence that it is not if?. We can use thBlP-completeness

of a language to talk about non-decision problems, even
though by definition these cannot h€-complete.

Definition: A problem.X (with boolean output or other-
wise) is said to b&NP-hard if there is a Cook reduction
from X to someNP-complete problenB. That is, there

IS a poly-time algorithm, with access to a hypothetical
poly-time algorithm forX, that decides5.

It should be clear that iX is NP-hard and there actually
IS a poly-time algorithm forX, thenP = NP.

Our general methodology will be to develop a library
of NP-complete problems. Once we have one problem,
there is a straightforward way to get more:

Lemma: Let B be anNP-complete language andlbe a
language. If we prove:

e A c NP
o3 <, A

then we may conclude that is NP-complete.

But how do we start this process? In CMPSCI 601, we
prove theCook-Levin Theorem, that the language SAT

IS NP-complete. Last time, we gave an unconditional
proof that a particulageneric NP languages NP-complete.
We'll still need the Cook-Levin Theorem, because SAT
IS @ much more convenient starting place to build up a
library of NP-complete languages.

CMPSCI611: SAT and 3-SAT Lecture 17

Remember that a boolean formula is defined tdies-
fiable if there is at least one setting of its input variables
that makes it true. The language SAT is the set of boolean
formulas that are satisfiable.

Recall that a boolean formula is @onjunctive normal
form (CNF) if it is the AND of zero or moreclauses
each of which is the OR of zero or maliterals. A for-
mula is iIn3-CNF if it is in CNF and has at most three
literals in any clause. The language CNF-SAT is the set
of CNF formulas that are satisfiable, and the language
3-SAT is the set of 3-CNF formulas that are satisfiable.

Note that 3-SAT is a subset of CNF-SAT, which is a sub-
set of SAT. In general, it C B, we can't be certain that
A <, B. Although theidentity function maps elements
of A to elements ofB, we can’t be sure that it doesn’t
map a non-element of to an element oB. But here we
know more — we can easily test a formula to see whether
it is in CNF or 3-CNF. To reduce 3-SAT to SAT, for ex-
ample, we map a formula to itself if it is in 3-CNF,
and to0 if it is not. A similar reduction works to show
A <, B wheneverA is such andentifiable special case

of B —thatis, whemd = BN C andC € P.

6

The Cook-Levin Theorem tells us that SAIN®-complete,
essentially by mapping an instance of the gend&iie
problem to a formula that says that a particular string is
a witness for a particulaNP-procedure on a particular
iInput. (Recall that ifA is anNP language defined so that
r e Aiff Jy . (z,y) € B, we cally variously awitness
proof, or certificate of x’s membership irA.)

We'd like to show that CNF-SAT and 3-SAT are aN®-
complete. It's clear that they are MP, but the easy spe-
cial case reduction doawot suffice to show theniNP-
complete. We can reduce 3-SAT to SAT, but what we
need is to reduce tHamownNP-complete language, SAT,
to the language we want to show to B@-complete, 3-
SAT.

On HW#4 I'll have you work through the general re-
duction from SAT to 3-SAT. Here, I'll present the eas-
ler reduction from CNF-SAT to 3-SAT. (The proof of
the Cook-Levin Theorem given in CMPSCI 601 actually
shows directly that CNF-SAT isIP-complete.)

Let's now see how to reduce CNF-SAT to 3-SAT. We
need a functiory that takes a CNF formula, in CNF,
and produces a new formufdy) such thatf(y) is in 3-
CNF and the two formulas are either both satisfiable or
both unsatisfiable. If we could makeand f(y) equiv-
alent, this would do, but there is no reason to think that
an arbitrary CNF formula will even have a 3-CNF equiv-
alent form. (Every formula can be translated into CNF,
but not necessarily into 3-CNF.)

Instead we will makg (¢) have a different meaning from
v, and even a different set of variables. We will add vari-
ables tof(y) in such a way that a satisfying setting of
both old and new variables g¢fy) will exist if and only

If there Is a satisfying setting of the old variables alone in
w. In fact the old variables will be set the same way in
each formula.

Becausey is in CNF, we know that it is the AND of
clauses, which we may namé;; v ...V l,), (fa1 V
ooV logy),ye o (b VooV L,), Where thel’s are each
literals. For each of these clausesaywe will make one
or more 3-CNF clauses ifi(¢), possibly including new
variables, so that the one clausedmwill be satisfied iff
all the corresponding clauses fity) are satisfied.

So let’s consider asingle clauge/. . . Vi, in . If £ < 3,

we can simply copy the clause overf@p), because it is
already suitable for a CNF formula. Whatkif= 4? We

can add one extra variable and make two claus@sv

VoV x1) and(—xy V l3 V £y). It's not too hard to see that
both of these clauses are satisfied iff at least one of the
/s iIs true. If ¢, or ¢, Is true, we can afford to make
false, and if’; or ¢, is true, we can make, true.

The general construction fér > 4 is similar. We have

k — 2 clauses and — 3 new variables: The clauses are
(Zl V 62 V 331), <_I561 V 63 V ZCQ), <_lSC2 V 64 V Ig), and
so on until we reachi—x_4 V {2 V x;_3) and finally
(ﬁxk_g Vl._1V fk)

If we satisfy the original clause with somig this satisfies

one of the new clauses, and we can satisfy the others by
making all thex,’s before it true and all those after it
false. Conversely, if we satisfy all the new clauses, we
cannot have done it only with,’s because there are more
clauses tham;’s and eache; only appears at most once

as true and at most once as false, and so can satisfy at
most one clause.

Since this reduction is easily computable in polynomial
time, it shows that CNF-SAK, 3-SAT, and thus (with
the quoted result that CNF-SAT MP-complete) that 3-
SAT isNP-complete.

3-SAT is often the most convenient problem to reduce to
something else, but other variants of SAT are also some-
times useful. One we’ll use latermot-all-equal-SAT or
NAE-SAT. Here the input is a formula in 3-CNF, but the
formula is “satisfied” only if there is both a true literal
and a false literal in each clause.

Let’s prove that NAE-SAT isNP-complete. Is it inNP?
Yes, if we guess a satisfying assignment it is easy (in lin-
ear time) to check the input formula and verify that there
IS a true literal and a false literal in each clause. So we
need to reduce a knowdP-complete problem to NAE-
SAT — we’ll choose 3-SAT itself. Again we’ll transform
each old clause into the AND of some new clauses, in
this case three of them.

10

Given the clausé, V ¢ V /3, we introduce two new vari-
ablesr andy that appear only in the new clauses for this
clause, and a single new variahlethat appears several
times. The three new clauses are

(LLVLelaVT)AN(—xVLIliVYy AxVyVa).

We must show that the three new clauses are jointly NAE-
satisfiable iff the original clause is satisfiable in the ordi-
nary way. First, we assume that the old clause is satisfied
and show that we can choose values for, anda to
NAE-satisfy the new clauses. We makérue (for all the
clauses in the formula) and consider the seven possibili-
ties for the values of;, /5, and/;. In each of the seven
cases, we can setandy, not both true, to NAE-satisfy
the three new clauses — we’ll check this on the board.

11

Now assume that the three new clauses are NAE-satisfied
— we will show that at least one of thés is true. First
assume that is true, because if the new formula is NAE-
satisfied witho false we can just negate every variable in
the formula and get a setting that NAE-satisfies all the
clauses but has true.

If «is true, then either or y must be false. I is false,
then either; or /5, must be true. If is false andr Is true,
then/; must be true. So one of the thrés must be true,
and the original clause is satisfied in the ordinary way.

12

cvpsciel: CLIQUE and VERTEX-COVER Lecture 17

So far we've seen that several problems in logiclRe
complete. In fact there afdP-complete problems in a
huge array of domains — we’ll next look at some prob-
lems ingraph theory, similar to some problems we've
already solved in polynomial time.

Let G be an undirected graph. éique in GG is a setA

of vertices such that all possible edges between elements
of A exist inGG. Any vertex forms a clique of size 1, the
endpoints of any edge form a clique of size 2, and any
triangle is a clique of size 3.

The language CLIQUE is the set of pajrs, k) such that

(G 1s an undirected graph that contains some clique of size
k. 1t should be clear that CLIQUE is in the cla¥®. Our
NP-procedure guesses an arbitrary detf vertices (by
guessing a bitvector of lengtlh). Then the verification
phase checks thad has size exactly and that there Is

an edge between every pair of verticesiin

13

We’'ll prove CLIQUE to beNP-complete by reducing 3-
SAT to it. Recall that this means defining a function from
3-CNF formulas to graph-integer pairs, such that satisfi-
able formulas are mapped to paifs, k) such thatG has

a k-cligue and unsatisfiable formulas are mapped to pairs
whereG does not have A-clique.

The essential element of any reduction is a correspon-
dence between the withesses of the tN#@B-problems.
The 3-CNF formula is satisfied or not satisfied by a bitvec-
tor of lengthn, and the possible cliques are also denoted
by bitvectors. We want to arrange the graph so that a sat-
Isfying instance corresponds t&aclique and vice versa,
and we get to pick for our convenience.

Here’s the construction. We have a node for eggpbear-
ance of a literal in the formulaSo if there aren clauses,
each withk; literals, the number of vertices in the graph
IS the sum from 1 ton of k;. Now we need edges. We
place an edge between nodeandy if they refer to lit-
erals thabccur in different clauseand arenot in conflict
(aren’t negations of one another). We sdb bem, the
number of clauses.

14

Nodes: Appearances of literals in clauses

Edges: Pairs of nodes that are in different clauses and
not in conflict.

We claim that the 3-CNF formula is satisfiable iff there is
anm-clique in the graph. First assume that there is a sat-
Isfying assignment, which means that there is at least one
literal in each clause that is set true. Fix a set containing
exactly one true literal in each clause. Tirenodes cor-
responding to these literals must form a cligue. No two
of them are in the same clause, and no two of them can
be in conflict, so all possible edges between then exist.

Conversely, suppose that we havewatlique in the graph.
The m nodes must occur im different clauses, since
edges only connect nodes in different clauses. Because
them nodes also contain no conflicts, we can construct a
setting of the variables consistent with all those literals.
(We may have to arbitrarily set variables that don’t occur
In the set either as true or as false.) This setting makes
at least one literal in each clause true, so it satisfies the
formula.

15

With some easy reductions, we can use CLIQUE to prove
some similar problems to B¢P-complete.

Again letG be an undirected graph. A set of verticés

IS anindependent setf there areno edges iy between
vertices inA. The language IND-SET is the set of all
pairs (G, k) such that there exists an independent set of
sizek in G. Clearly IND-SET is inNP, because we can
guess the sed, verify its size, and verify that it contains
no edges.

We prove IND-SET to b&lP-complete by reducing CLIQUE
to it, now that we know CLIQUE to b&lP-complete.
This reduction will be a function that takes pairs, k)

to pairs(H, ¢) such thati has a clique of sizé iff H has

an independent set of siZe

But this is easy! The problems are very similar, so much
so that we can givé! the same set of vertices asand
arrange thatasetis a clique inG: iff it is an independent

set inH. How do we do this? We want to map sets with
all the edges to sets with none of the edges, so we just
make H the complementof G — the graph that has an
edge(z, y) exactly when that edge %ot an edge ofG.
Then the function takindgG, k) to (H, k) is the desired
reduction.

16

Another similar problem is VERTEX-COVER. A set
of nodes of an undirected grajgh is a vertex cover if
every edge of7 has at least one endpointih The lan-
guage VERTEX-COVER is the set of paif§, k) such
thatG has a vertex cover of size As before, itis clear
that VERTEX-COVER is ilNP.

The Adler notes give a direct reduction from 3-SAT to
VERTEX-COVER, which is very similar to the reduction
from 3-SAT to CLIQUE. But we don’t need to use this
reduction, because it’'s very easy to reduce CLIQUE or
IND-SET to VERTEX-COVER and thus use our previ-
ous work to prove VERTEX-COVER to b¢P-complete.

If A C V isa vertex cover iz, look at the set” \ A of
nodesnotin A. There are no edges between these nodes,
since every edge has at least one endpoidtiBoV \ A

IS an independent set — in fact it is an independeniffset
A'Is a vertex cover.

So G has a vertex cover of sizeiff it has an indepen-
dent set of sizes — k. Thus the function takingG, k)
to (G, n — k) is areduction from IND-SET to VERTEX-
COVER, proving that the latter problemhd-complete.

17

We don’t want to get carried away with this sort of ar-
gument, though. Consider the language NON-CLIQUE,
defined to be the set of paif&, k) such thatz doesnot
have a cligue of sizé. Is this problemNP-complete?

In all likelihood, it is not. A Karp reduction must take
yes-instances of one problem to yes-instances of the other,
so the identity map is not a Karp reduction. In fact it's not

at all clear that NON-CLIQUE is itNP, because there is
nothing that we can guess to prove that a clique chaes
exist.

18

We define a classo-NPto be the set of languages whose
complements are INP. (Note that this is quite different
from the complement operation taking us from CLIQUE
to IND-SET.) We can defineo-NP-completeness anal-
ogously toNP-completeness, and see that a language is
co-NP-complete iff its complement NP-complete. Could

a language be both? It follows easily from the definitions
that if there is,NP andco-NP are the same class. This
IS considered unlikely, though not quite as unlikelyPas
andNP being the same.

A Cookreduction is allowed to take the answer of a query
and negate it, so there is a simple Cook reduction from
CLIQUE to NON-CLIQUE. (To decide whethélG, k)

IS In CLIQUE, determine whether the same pair is in
NON-CLIQUE and reverse the answer.) So tweNF-
complete problems are dllP-hard, though probably not
NP-complete.

A final note — if we insist thak or n — k be a constant,
CLIQUE and these other problems become solvabl in
because we now have time to guess all possible cliques
(or independent sets, or vertex covers). Sometimes an
identifiable special case of dadP-complete problem is
easier.

19

CMPSCI611: The SUBSET-SUM Problem Lecture 17

For our final problem today, we revisit the SUBSET-SUM
problem —the input is a set of numb€is,, ..., a,} and

a target numbet, and we ask whether there is a sub-
set of the numbers that add exactlyttdJsing dynamic
programming, we showed that we could decide this lan-
guage in time that is polynomial in ands, the sum of

all thea,.

Now we allow the numbers to get larger, so that they now
might ben bits long. The problem is still ilNP, because

we can guess a subset by guessing a bitvector, add the
numbers in the set, and verify that we getBut it's no
longer clear that we are iR, and in fact we will now see
that the general problem i¢P-complete.

We reduce 3-SAT to SUBSET-SUM (with large num-
bers). We first assume that every clause in our input for-
mula has exactly three literals — we can just repeat literals
In the same clause to make this true. Our numbers will be
represented in decimal notation, with a column for each
of the v variables and a column for each clause in the
formula.

20

We’'ll create an itenmu,; for each of the2v literals. This
item will have a 1 in the column for its variable, a 1 in
the column of each clause where the literal appears, and
zeroes everywhere else. We also have two items for each
clause, each with a 1 in the column for that clause and
zeroes everywhere else. The target number has a 1 for
each variable column and a 3 for each clause column.

We now have to prove that there is a subset summing to
the target iff the formula is satisfiable. If there is a sat-
Isfying assignment, we choose the item for each literal
In that assignment. This has one 1 in each variable col-
umn, and somewhere from one to three 1's in each clause
column. Using extra items as needed, we can reach the
target.

Conversely, If we reach the target weusthave chosen
one item with a 1 in each variable column, so we have
pickedv variables forming an assignment. Since we have
three 1's in each clause column and at most two came
from the extra items, we must have at least one 1 in each
clause column from our assignment, making it a satisfy-
Ing assignment.

21

Given a problem with numerical parameters, we say that
It is pseudopolynomialif it becomes polynomial when
those parameters are given in unary. If iNB-complete
with parameters given in unary, we say that siongly
NP-complete The SUBSET-SUM problem is pseudopoly-
nomial, but all our graph problems are stronjliy-complete.

Recall that the KNAPSACK is similar to SUBSET-SUM
but has avaluefor each item as well as itgeight. We are
asked to find whether a set of at least a given value exists
with at most a given weight. Since SUBSET-SUM is an
identifiable special case of KNAPSACK (where weight
and value are both equal), we know that SUBSET-SUM
<, KNAPSACK. Since KNAPSACK (as a decision prob-
lem) is iIn NP, it is NP-complete. The associated opti-
mization problem is thublP-hard.

22

