
CMPSCI611: NP Completeness Lecture 16

We’re going to spend the next few lectures studying a
set of computational problems called theNP-complete
problems. The essential facts are these:

• Any NP-complete problem can be solved by a simple,
but exponentially slow algorithm.

• We don’t have polynomial-time solutions to anyNP-
complete problem.

• We can prove that eitherall NP-complete solutions
have polynomial-time solutions, ornoneof them do.

• It is generally believed that none of them do. But
proving this would require solving theP versus NP
problem, one of the best known unsolved problems
in mathematics, much less theoretical computer sci-
ence.

In this lecture we”ll go over the basic definitions and
results of the theory ofNP-completeness. In the next
two lectures we’ll see examples ofNP-complete prob-
lems and how to prove that they areNP-complete. This
material has considerable overlap with that of CMPSCI
601, but we’ll try here to present things from a more al-
gorithmic perspective.

1

Let’s first review what we mean by aproblem. The al-
gorithms we’ve seen so far in the course have addressed
several different kinds of problems:

• Decision Problems:The input is some piece of data
(without loss of generality, a string) and the output
is a bit. A decision problem defines aformal lan-
guage, the set of strings for which the desired output
is “true”. For example, we might input an undirected
graph and output whether it has a perfect matching.

• Search Problems: Here the desired output is some
piece of data related to the input. Often we have more
than one acceptable output string. For example, we
might input an undirected graph and output a perfect
matching in the graph, if one exists.

• Optimization Problems: We have an input, a set of
possibleoptions related to it, and areward function
on those options. The output is an option that maxi-
mizes the possible reward for the input. (If we want
to minimize the “score”, we call it acost function.)

• Approximation Problems: These are like optimiza-
tion problems, but we are satisfied with an option that
getsclose tothe maximum reward or minimum cost,
rather than the absolute best option.

2

Here are two problem domains where we can define each
of these four kinds of problems.

A boolean formula is an expression where the atomic el-
ements areboolean constantsandinput variables, and
the operators are AND (∧), OR (∨), and NOT (¬). A
boolean formula is said to be inconjunctive normal
form (CNF) if it is the AND of zero or moreclauses,
and each clause is the OR of zero or moreliterals, where
a literal is an input variable or a negated input variable.
For example, the formula

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x4) ∧ (¬x1 ∨ x4)

is in CNF. It has three clauses, and the clauses have three,
one, and two literals respectively.

A boolean formula has atruth value that depends on the
truth values of its inputs. The formula issatisfiable if
there is at least one setting of the inputs that makes it
true. (This means that the negation of the formula is not
a tautology.)

3

The decision problem SAT is to input a boolean formula
and decide whether it is satisfiable. The decision prob-
lem CNF-SAT is the same but requires that the input is
in CNF. The decision problem 3-SAT is the same but re-
quires that the input be in CNF with at most three vari-
ables per clause.

Given a boolean formula, a natural search problem is to
find a satisfying assignment, if one exists. If we had a
decision procedure for SAT, we could use it to solve the
search problem as follows:

• Test the input formula for satisfiability.

• Substitute a constant 0 forx1 in the formula and test
it again. If it is still satisfiable, setx1 to 0, otherwise
setx1 to 1.

• With x1 set this way, try substituting0 for x2. If the
formula is still satisfiable, setx2 to 0, otherwise setx2

to 1.

• Continue in this way, setting each variable to a con-
stant in a way that keeps the formula satisfiable.

• When all the variables are set, return the setting.

If the decision procedure runs in timet(n), the search
procedure runs inO(nt(n) + n2).

4

A natural optimization version of CNF-SAT or 3-SAT
is to input the formula and find a setting that satisfies
(makes true) as many clauses as possible. These prob-
lems are called MAX-SAT and MAX-3-SAT respectively.
In terms of “polynomial” or “not-polynomial”, the search
and decision problems are also of equal difficulty, as we’ll
see later.

Our second problem domain isgraph colorability . Given
an undirected graph, avalid vertex coloring is an assign-
ment of a color to each vertex such that there is no edge
whose two endpoints are the same color. Thegraph col-
oring problem is to input graph and find a coloring that
uses as few colors as possible. (This is closely related
to the map coloring problem, most familiar from the
theorem that every planar map can be colored with four
colors.) Again we have multiple versions of the problem:

• Decision: GivenG andk, doesG have ak-coloring?

• Search: GivenG andk, find ak-coloring if one ex-
ists.

• Optimization: GivenG, find a coloring with as few
colors as possible.

• Approximation: Given G, find a coloring that uses
close to the minimum number of colors.

5

Once again if we had polynomial-time solutions to any of
the decision, search, or optimization problems, we could
find polynomial time solutions to the others:

• The search problem immediately answers the deci-
sion problem.

• The optimization problem also solves the decision prob-
lem.

• Given a search procedure, we can use binary search
to find the optimalk and then find ak-coloring.

• To solve the search problem as we did for satisfiabil-
ity, we need a decision procedure that tells us whether
a partial k-coloring can be extended to a complete
one. There is a simple trick to convert a partial-coloring
decision problem into an equivalent ordinary decision
problem.

To study whether a problem is solvable in polynomial
time, then, it usually suffices to look at the simplest case,
that of decision problems. We therefore define the class
P to be the set of decision problems for which there ex-
ists an algorithm solving them inO(nk) time for some
constantk.

6

As we discussed in the first lecture,P is a potentially
problematic definition for “quickly solvable problems”.
But if we could show a problem tonotbe inP, we would
show at least that its running time does not scale with in-
creasing input size. AndP has the advantage that it is
robust across models – several different ways of formal-
izing “algorithm” and “running time” give us the same
class.

We’re now ready to defineNP-completeness. The first
step is to defineNP, a class of decision problems:

Definition: A formal languageA is in NP if there exists
another languageB in P, such that for any stringx, x is
in A iff there exists a stringy, with |y| = |x|O(1), such
that(x, y) is in B.

An equivalent, more algorithmic definition ofNP is as
follows. An NP-procedure consists of aguess phase
and averification phase. Given an inputx, the guess
phase chooses an arbitrary stringy such that|y| = |x|O(1).
The verification phase is an algorithm that takes bothx
andy as input and returns a bit. We say thatx is in the
language of theNP-procedure iffit is possiblefor the
procedure to guess ay making the verification phase out-
put “true”.

7

The two definitions are equivalent because ify exists,
it is possible for the guess procedure to guess it, and
vice versa. Earlier we mentioned the idea ofrandomly
guessing a string – this gives us a Monte Carlo algo-
rithm for anyNP language. But the success probability
of this Monte Carlo algorithm could be very small. If
there is exactly oney such that the verification phase ac-
cepts(x, y), the probability of guessing it is2−|x|

O(1)
. This

probability is too small for amplification to be useful.

Thereis an obvious deterministic decision procedure for
anyNP language – simply cycle through all possible strings
y and see whether the verification procedure accepts(x, y).
The problem is that there are2nO(1)

possibley’s, of course.
Our question is whether there is a better way to decide
membership in theNP language, one that might run in
polynomial time.

8

Note that proving a language to be inNP is generally
simple. We need to define a string to be guessed, and
define a poly-time verification procedure that accepts the
input and a guess iff the guessprovesthat the input is in
the language. For SAT, our guess is a setting of then in-
put variables and the verification procedure evaluates the
input formula with that setting. For 3-COLOR, the guess
is a three-coloring of the vertices and the verification pro-
cedure checks every edge and accepts if all of them have
endpoints of two different colors.

The classNP includes all the languages inP, of course,
because we can have anNP procedure with no guess
phase that just tests for membership in the verification
phase. We need to determine relationships among the
languages inNP, using the notion ofreduction. Above
we argued, for example, thatif the decision problem SAT
were inP, so would be the corresponding search prob-
lem. We did this by describing an algorithm for the search
problem that would run in polynomial time if it were
allowed to make calls to a hypothetical poly-time algo-
rithm for the decision problem. This is called aCook
reduction. For definingNP-completeness, though, we
will need a slightly different notion of reduction.

9

Let A andB be two formal languages, possibly over dif-
ferent alphabets. AKarp reduction from A to B is a
poly-time computable functionf such that for any string
x, x ∈ A if and only if f (x) ∈ B. If such a reduction ex-
ists we say thatA is poly-time reducible to B and write
“A ≤p B”. We also sometimes read this as “A is no
harder thanB”.

The key point of this definition is that ifB is in P and
A ≤p B, we can be sure thatA ∈ P as well. This is
because we can decide whetherx is in A in poly-time by:

• Computingf (x),

• Testing whetherf (x) ∈ B, and

• Reporting that answer as our answer for whetherx ∈
A.

This is a poly-time decision procedure forA becausef is
assumed to be poly-time computable, which means not
only that the first step takes poly-time but also that the
stringf (x) has a length polynomial in that ofx. So the
time of the second step is polynomialin the length of
f (x) becauseB has a poly-time decision procedure, and
this is polynomialin the length ofx because a polynomial
of a polynomial is just another polynomial.

10

The relation≤p is apreorder on the languages inNP, be-
cause it is reflexive and transitive. It is not antisymmetric
because it is possible that bothA ≤p B andB ≤p A
are true – in this case we say thatA andB arepoly-time
equivalent. Then≤p is a partial order on the equivalence
classes of this relation.

With the exceptions of∅ andΣ∗, all P languages are poly-
time equivalent to each other. SinceP = NP might be
true, it might be that there is only one nontrivial equiv-
alence class inNP. But if P 6= NP, as is generally be-
lieved, there is another important equivalence class:

Definition: A languageB is NP-complete if (1) it is in
NP, and (2) for any languageA in NP, A ≤p B.

Thus theNP-complete languages, if they exist, are the
hardestlanguages inNP. It should be easy to see that
they form an equivalence class, and that if anyNP-complete
language is also inP, it follows thatP = NP.

11

If a language isNP-complete, then, we have strong evi-
dence that it is not inP. We can use theNP-completeness
of a language to talk about non-decision problems, even
though by definition these cannot beNP-complete.

Definition: A problemX (with boolean output or other-
wise) is said to beNP-hard if there is a Cook reduction
from X to someNP-complete problemB. That is, there
is a poly-time algorithm, with access to a hypothetical
poly-time algorithm forX, that decidesB.

It should be clear that ifX is NP-hard and there actually
is a poly-time algorithm forX, thenP = NP.

Our general methodology will be to develop a library
of NP-complete problems. Once we have one problem,
there is a straightforward way to get more:

Lemma: Let B be anNP-complete language andA be a
language. If we prove:

• A ∈ NP

• B ≤p A

then we may conclude thatA is NP-complete.

12

But how do we start this process? In CMPSCI 601, we
prove theCook-Levin Theorem, that the language SAT
is NP-complete. That proof goes further into the details
of the model of computation than we want to go here, so
we will take its result on faith. But if we do that, the con-
cept ofNP-completeness becomes somewhat mysterious
– why should there be anyNP-complete languages at all?

In the rest of this lecture we’ll give an unconditional proof
that a particular language isNP-complete. We’ll still
need the Cook-Levin Theorem, because SAT is a much
more convenient starting place to build up a library of
NP-complete languages. (The discovery that there are
interestingNP-hard problems, that people really wanted
to solve, is what made the theory applicable – this was
the great achievement of Karp.)

To define ourNP-complete language, we need to fix a
model of computation that includesNP procedures. IfZ
is anNP-procedure, we need there to be a stringz that
indicates, given an inputx, how long a stringy should be
guessed byZ and what the verification procedure ofZ
will do given a certain number of steps to run.

13

Our languageU will be the set of tuples(z, x, 1g, 1t) such
that if z denotes theNP procedureZ in this way, there is
a stringy of lengthg such that the verification phase of
Z accepts(x, y) in at mostt steps. The inputsg andt are
given in unary so that the running time of the procedure
will be only polynomial in the size of the input toU .

Theorem: U is NP-complete.

Proof: We first must show thatU is in NP. We define an
NP-procedure that on input(z, x, 1g, 1t), guesses a string
y of lengthg and then runs the verification phase ofZ for
up tot steps on(x, y). If this accepts, we accept the input
tuple. Otherwise (it rejects, it runs out of time, orz isn’t
valid) we reject. Clearly it ispossiblefor this procedure
to accept(z, x, 1g, 1t) iff it is in U .

14

Now letA be an arbitrary language inNP. We will show
A ≤p U . There must exist a stringa denoting anNP-
procedure forA, where on an input of lengthn the pro-
cedure will guess a string of length at mostp(n) and run
for at mostq(n) steps, wherep andq are polynomials.
We need a functionf such that for any stringx, x ∈ A
iff f (x) ∈ U . To do this, we definef (x) to be the tuple
(a, x, 1p(|x|), 1q(|x|)). This is easy to compute ifa, p, and
q are known, and takes aroundn + p(n) + q(n) time to
write down the answer, a polynomial in the input sizen.
By the definition ofU andA, thisf (x) is in U iff x ∈ A.

Next time we’ll see several examples ofNP-completeness
proofs, starting from the Cook-Levin Theorem about SAT.

15

