CMPSCI611: NP Completeness Lecture 16

We're going to spend the next few lectures studying a
set of computational problems called tN€-complete
problems. The essential facts are these:

e Any NP-complete problem can be solved by a simple,
but exponentially slow algorithm.

¢ \We don’t have polynomial-time solutions to aNyP-
complete problem.

e \We can prove that eithall NP-complete solutions
have polynomial-time solutions, ooneof them do.

e It is generally believed that none of them do. But
proving this would require solving thié versus NP
problem, one of the best known unsolved problems
In mathematics, much less theoretical computer sci-
ence.

In this lecture we”ll go over the basic definitions and
results of the theory oNP-completeness. In the next
two lectures we’ll see examples diP-complete prob-
lems and how to prove that they ax#-complete. This
material has considerable overlap with that of CMPSCI
601, but we'll try here to present things from a more al-
gorithmic perspective.

Let’s first review what we mean by@oblem. The al-
gorithms we've seen so far in the course have addressed
several different kinds of problems:

e Decision Problems:The input is some piece of data
(without loss of generality, a string) and the output
IS a bit. A decision problem definesfarmal lan-
guage the set of strings for which the desired output
IS “true”. For example, we might input an undirected
graph and output whether it has a perfect matching.

e Search Problems: Here the desired output is some
piece of data related to the input. Often we have more
than one acceptable output string. For example, we
might input an undirected graph and output a perfect
matching in the graph, if one exists.

e Optimization Problems: We have an input, a set of
possibleoptionsrelated to it, and aeward function
on those options. The output is an option that maxi-
mizes the possible reward for the input. (If we want
to minimize the “score”, we call it aost function.)

e Approximation Problems: These are like optimiza-
tion problems, but we are satisfied with an option that
getsclose tothe maximum reward or minimum cost,
rather than the absolute best option.

2

Here are two problem domains where we can define each
of these four kinds of problems.

A boolean formulais an expression where the atomic el-
ements ardoolean constantsandinput variables, and
the operators are AND/), OR (v), and NOT (). A
boolean formula is said to be ioonjunctive normal
form (CNF) if it is the AND of zero or moreclauses
and each clause is the OR of zero or miderals, where

a literal is an input variable or a negated input variable.
For example, the formula

(21 V —xo V —x3) A (my) A (a1 V xy)

IS In CNF. It has three clauses, and the clauses have three,
one, and two literals respectively.

A boolean formula has tauth value that depends on the
truth values of its inputs. The formula satisfiable if
there is at least one setting of the inputs that makes it
true. (This means that the negation of the formula is not
a tautology.)

The decision problem SAT is to input a boolean formula
and decide whether it is satisfiable. The decision prob-
lem CNF-SAT is the same but requires that the input is
In CNF. The decision problem 3-SAT is the same but re-
quires that the input be in CNF with at most three vari-
ables per clause.

Given a boolean formula, a natural search problem is to
find a satisfying assignment, if one exists. If we had a
decision procedure for SAT, we could use it to solve the
search problem as follows:

e Test the input formula for satisfiability.

e Substitute a constant O fay in the formula and test
it again. If it is still satisfiable, set; to 0, otherwise
setr; to 1.

e With z; set this way, try substituting for x,. If the
formula is still satisfiable, set; to 0, otherwise set,
to 1.

e Continue in this way, setting each variable to a con-
stant in a way that keeps the formula satisfiable.

e When all the variables are set, return the setting.

If the decision procedure runs in tintén), the search
procedure runs i (nt(n) + n?).

4

A natural optimization version of CNF-SAT or 3-SAT

IS to input the formula and find a setting that satisfies
(makes true) as many clauses as possible. These prob-
lems are called MAX-SAT and MAX-3-SAT respectively.

In terms of “polynomial” or “not-polynomial”, the search
and decision problems are also of equal difficulty, as we’ll
see later.

Our second problem domaingsaph colorability . Given

an undirected graph \alid vertex coloring is an assign-
ment of a color to each vertex such that there is no edge
whose two endpoints are the same color. gregph col-
oring problem is to input graph and find a coloring that
uses as few colors as possible. (This is closely related
to the map coloring problem, most familiar from the
theorem that every planar map can be colored with four
colors.) Again we have multiple versions of the problem:

e Decision: GivenG andk, does have ak-coloring?

e Search: Given G andk, find ak-coloring if one ex-
IStS.

e Optimization: Givend, find a coloring with as few
colors as possible.

e Approximation: Given(, find a coloring that uses
close to the minimum number of colors.

5

Once again if we had polynomial-time solutions to any of
the decision, search, or optimization problems, we could
find polynomial time solutions to the others:

e The search problem immediately answers the deci-
sion problem.

e The optimization problem also solves the decision prob-
lem.

e Given a search procedure, we can use binary search
to find the optimak and then find &-coloring.

e To solve the search problem as we did for satisfiabil-
ity, we need a decision procedure that tells us whether
a partial k-coloring can be extended to a complete
one. There is a simple trick to convert a partial-coloring
decision problem into an equivalent ordinary decision
problem.

To study whether a problem is solvable in polynomial
time, then, it usually suffices to look at the simplest case,
that of decision problems. We therefore define the class
P to be the set of decision problems for which there ex-
ists an algorithm solving them i®(n*) time for some
constantt.

As we discussed in the first lecturB,is a potentially
problematic definition for “quickly solvable problems”.
But if we could show a problem tootbe inP, we would
show at least that its running time does not scale with in-
creasing input size. An& has the advantage that it is
robust across models — several different ways of formal-
1zing “algorithm” and “running time” give us the same
class.

We're now ready to definelP-completeness. The first
step is to defin@&lP, a class of decision problems:

Definition: A formal languageA is in NP if there exists
another languag® in P, such that for any string, x is
in A iff there exists a string, with |y| = |z|°()), such
that(z,y) isin B.

An equivalent, more algorithmic definition ™P Is as
follows. An NP-procedure consists of aguess phase
and averification phase Given an inputz, the guess
phase chooses an arbitrary stringuch thaty| = |[2|°.
The verification phase is an algorithm that takes hoth
andy as input and returns a bit. We say thais in the
language of theNP-procedure iffit is possiblefor the
procedure to guessiamaking the verification phase out-
put “true”.

The two definitions are equivalent because iExists,

It Is possible for the guess procedure to guess it, and
vice versa. Earlier we mentioned the idearahdomly
guessing a string — this gives us a Monte Carlo algo-
rithm for any NP language. But the success probability
of this Monte Carlo algorithm could be very small. If
there is exactly ong such that the verification phase ac-
cepts(z, y), the probability of guessing it is™I”"". This
probability is too small for amplification to be useful.

Thereis an obvious deterministic decision procedure for
anyNP language — simply cycle through all possible strings
y and see whether the verification procedure acdepts.

The problem s that there are”” possibley’s, of course.

Our question is whether there is a better way to decide
membership in thé&NP language, one that might run in
polynomial time.

Note that proving a language to be NP is generally
simple. We need to define a string to be guessed, and
define a poly-time verification procedure that accepts the
Input and a guess iff the guepmvesthat the input is in

the language. For SAT, our guess is a setting oftine

put variables and the verification procedure evaluates the
Input formula with that setting. For 3-COLOR, the guess
IS a three-coloring of the vertices and the verification pro-
cedure checks every edge and accepts if all of them have
endpoints of two different colors.

The clasdNP includes all the languages i of course,
because we can have &P procedure with no guess
phase that just tests for membership in the verification
phase. We need to determine relationships among the
languages INP, using the notion ofeduction. Above

we argued, for example, thitthe decision problem SAT
were inP, so would be the corresponding search prob-
lem. We did this by describing an algorithm for the search
problem that would run in polynomial time if it were
allowed to make calls to a hypothetical poly-time algo-
rithm for the decision problem. This is calledGook
reduction. For definingNP-completeness, though, we
will need a slightly different notion of reduction.

Let A andB be two formal languages, possibly over dif-
ferent alphabets. Aarp reduction from A to B is a
poly-time computable functiori such that for any string
xz,r € Aifandonlyif f(z) € B. If such a reduction ex-
Ists we say tha#l is poly-time reducible to B and write
“A <, B". We also sometimes read this ad ‘is no
harder thamB”.

The key point of this definition is that iB is in P and
A <, B, we can be sure that € P as well. This is
because we can decide whethes in A in poly-time by:

e Computingf(z),
e Testing whether(z) € B, and

e Reporting that answer as our answer for whether
A.

This is a poly-time decision procedure fdroecause is
assumed to be poly-time computable, which means not
only that the first step takes poly-time but also that the
string f(x) has a length polynomial in that af So the
time of the second step is polynomial the length of
f(x) becauseB has a poly-time decision procedure, and
this is polynomiain the length ofc because a polynomial

of a polynomial is just another polynomial.

10

The relation<, is apreorder on the languages NP, be-
cause it is reflexive and transitive. It is not antisymmetric
because it is possible that both <, B andB <, A
are true — in this case we say thlaand B arepoly-time
equivalent Then<, is a partial order on the equivalence
classes of this relation.

With the exceptions df andX>*, all P languages are poly-
time equivalent to each other. SinBe= NP might be
true, it might be that there is only one nontrivial equiv-
alence class IINP. But if P 4 NP, as is generally be-
lieved, there is another important equivalence class:

Definition: A languageB is NP-complete if (1) itis in
NP, and (2) for any languagé in NP, A <, B.

Thus theNP-complete languages, if they exist, are the
hardestlanguages iMNP. It should be easy to see that
they form an equivalence class, and that if &li8.complete
language is also iR, it follows thatP = NP.

11

If a language INP-complete, then, we have strong evi-
dence that it is not if?. We can use thBlP-completeness

of a language to talk about non-decision problems, even
though by definition these cannot N€-complete.

Definition: A problem.X (with boolean output or other-
wise) is said to b&P-hard if there is a Cook reduction
from X to someNP-complete problenB. That is, there

IS a poly-time algorithm, with access to a hypothetical
poly-time algorithm forX, that decide3.

It should be clear that iX is NP-hard and there actually
IS a poly-time algorithm forX, thenP = NP.

Our general methodology will be to develop a library
of NP-complete problems. Once we have one problem,
there Is a straightforward way to get more:

Lemma: Let B be anNP-complete language andlbe a
language. If we prove:

e Ac NP
o3 <, A

then we may conclude that is NP-complete.

12

But how do we start this process? In CMPSCI 601, we
prove theCook-Levin Theorem, that the language SAT

IS NP-complete. That proof goes further into the details
of the model of computation than we want to go here, so
we will take its result on faith. But if we do that, the con-
cept ofNP-completeness becomes somewhat mysterious
—why should there be ariyP-complete languages at all?

In the rest of this lecture we’ll give an unconditional proof
that a particular language NP-complete. We'll still
need the Cook-Levin Theorem, because SAT is a much
more convenient starting place to build up a library of
NP-complete languages. (The discovery that there are
InterestingNP-hard problems, that people really wanted
to solve, is what made the theory applicable — this was
the great achievement of Karp.)

To define ourNP-complete language, we need to fix a
model of computation that includ®” procedures. I/

IS anNP-procedure, we need there to be a strinthat
Indicates, given an input, how long a string; should be
guessed by’ and what the verification procedure gf
will do given a certain number of steps to run.

13

Our languagé/ will be the set of tuplesz, z, 19, 1') such
that if z denotes thé&lP procedureZ in this way, there is

a stringy of lengthg such that the verification phase of
Z acceptgz, y) in at mostt steps. The inputg andt are
given in unary so that the running time of the procedure
will be only polynomial in the size of the input 1@.

Theorem: U is NP-complete.

Proof: We first must show thal’ is in NP. We define an
NP-procedure that on input, x, 19, 1), guesses a string
y of lengthg and then runs the verification phasebfor

up tot steps oriz, y). If this accepts, we accept the input
tuple. Otherwise (it rejects, it runs out of time, oisn’t
valid) we reject. Clearly it ipossiblefor this procedure
to accep{z, z, 19, 1") iffitisin U.

14

Now let A be an arbitrary language MP. We will show
A <, U. There must exist a string denoting arNP-
procedure ford, where on an input of length the pro-
cedure will guess a string of length at mpst) and run
for at mostq(n) steps, where andq are polynomials.
We need a functiorf such that for any string, = € A
Iff f(x) € U. To do this, we defing(x) to be the tuple
(a, z, 1P0=) 19(0=D)y " This is easy to compute if, p, and
q are known, and takes aroumntht p(n) + ¢(n) time to
write down the answer, a polynomial in the input size
By the definition ofU and A, this f(x) isin U iff x € A.

Next time we’ll see several examplesiP-completeness
proofs, starting from the Cook-Levin Theorem about SAT.

15

