
CMPSCI611: Primality Testing Lecture 14

One of the most important domains for randomized al-
gorithms isnumber theory, particularly with its appli-
cations tocryptography. Today we’ll look at one of the
several fast randomized algorithms forprimality testing ,
but let’s first set some context.

When we operate on very large integers, our normal mea-
sure of the input size is the number of bits required to
store the number:log n for an integern. In practice we
might store the integer in a list of machine words, as in
the JavaBignum class, but since only a constant number
of bits will fit in a machine word,O(log n) is still a good
measure of the size ofn.

We can add, subtract, multiply, or divide large numbers
in time linear or nearly linear in their size. We can run
theEuclidean algorithm on two numbers and thus find
whether they have a common factor. But other opera-
tions that we take for granted on small integers appear to
become much harder on large ones.

1

How do we test small numbers to see whether they are
prime? Using the definition, we get thetrial division
method, where we try every number from2 through

√
n

to see whether it dividesn exactly. This takesO(
√

n)
time, which looks promising until you realize that this
time isexponentialin log n. Until recently, nodetermin-
istic algorithm was known that ran in(log n)O(1) time.
This theoretical challenge was met in 2004 by Agrawal,
Kayal, and Saxena, who have an algorithm that does it in
aboutO((log n)15/2) and probably somewhat faster, about
O((log n)6). (A very readable August 2005 version of the
paper is posted on Agrawal’s web site at IIT Kanpur.) But
their algorithm is not used in practice, because the ran-
domized ones are much faster and give arbitrarily high
confidence in their answers.

2

One of the most important uses for primality testing is
in generating primes, particularly for use in public-key
cryptography. Theprime number theorem says that the
number of primes less thanx is about x

ln x, so if you can
testO(k) randomk-bit numbers you will probably find a
prime.

The problem offactoring a large composite number ap-
pears to be much harder than primality testing. The secu-
rity of the RSA cryptosystem depends absolutely on this
difficulty, because the public key is the product of two
large prime numbers and messages can be decoded with
knowledge of the two individual primes.

In 1994 Peter Shor published an algorithm that would
factor numbers in polynomial time on aquantum com-
puter, a generalization of randomized computation that
may or may not ever be practical. Researchers at IBM
in 2001 were able to implement the algorithm to factor
the number 15 (turns out it’s 3 times 5), but scaling it up
poses technical problems.

3

Understanding the randomized algorithm requires a bit
of algebra. Ifn is any number,Zn is the ring of integers
modulon. We defineZ∗

n to be the integers modulon that
are relatively prime ton, viewed as a group under multi-
plication. If n is prime,Z∗

n is a group ofn− 1 elements.
(It is a cyclic group, meaning that there is an elementg
such that every other element is a power ofg. This is the
meaning of “discrete logarithm” – ifga = b we say thatb
is the log ofa (with respect tog).)

If n is not prime, some of the numbers modulon are not
relatively prime ton, andZ∗

n has fewer thann − 1 ele-
ments. For example, ifn = pq andp andq are prime,Z∗

n

has(p− 1)(q − 1) elements. (By the Chinese Remainder
Theorem,Zn is isomorphic to the product ofZpe for each
maximal prime-power divisorpe of n, andZ∗

n is similarly
the product of the groupsZ∗

pe.)

4

The basic idea of the randomized algorithm is simple.
Choose a random numbera in Zn, and computean−1

modulo n. (How? Repeated squaring, reducing each
product modulon so we only deal with numbers inZn.
This takesO(log n) multiplications.)

If n is prime, then as long asa is in Z∗
n, an−1 will be

1. This is because any element of a group, raised to the
order of the group, gives the identity. Our random choice
couldbe0, of course, but that is vanishingly unlikely.

If n is composite, however, we have a reasonable hope
that the random numbera, raised to a power that isnot
the order of its group, should be random. Ifan−1 is not
1, we have aproof thatn is not prime, though this still
gives us no clue how to factor it. The technical difficulty
of the randomized tests is in determining when we could
get a “false positive” for primality – a numbera where
an−1 = 1 even thoughn is composite.

5

Unfortunately, perhaps, there are composite numbersn
for which anya in Z∗

n satisfiesan−1 = modulon. These
are calledCarmichael numbersand there are infinitely
many of them, each (as it happens) a product of exactly
three primes. If we choose a randoma in Zn, we have
a small chance of finding one that has a common factor
with n, but for the product of threelarge primes this is
vanishingly unlikely.

The smallest Carmichael number is 561, which factors
as3 · 11 · 17. (Another interesting one is “Ramanujan’s
taxicab number”,1729 = 7 · 13 · 19, which is also the
smallest number that is the sum of two cubes in two dif-
ferent ways. But I digress.)

We can think of a number inZ561 as a triple of numbers
in Z3 × Z11 × Z17. For example, 43 can be viewed as
(1, 10, 9) because43 = 1 mod 3,43 = 10 mod 11, and
43 = 9 mod 17. The numbers that are not inZ∗

561 are
those rare numbers that have a zero in one of the three
components. When we raise a number to a power, we
raise each component to that power with respect to its
particular modulus.

6

What is(1, 10, 9)560? Modulo a primep, any number to
thep−1 power is 1. So(1, 10, 9)560 = (1560, (1010)56, (916)35) =
(1, 1, 1). As you can see, because3 − 1, 11 − 1, and
17 − 1 all happen to divide 560,any a ∈ Z∗

561 satisfies
a560 = 1. So our simple randomized test does not work
for this prime, or in fact for any Carmichael number.

The Miller-Rabin test is a randomized variant of this
simple test that actually does work. We take our random
a and check whetheran−1 = 1 modulon. If this is false,
of course we know thatn is not prime. If it is true, we
write n− 1 as2rs, wheres is odd. (We know thatr is at
least 1, because ifn− 1 were odd we would know thatn
is even and thus not prime.)

Our test is to calculate the numbersas, a2s, a4s, . . . ,an−1,
each modulon, and see whether any of themminus one
has a nontrivial common factor withn (by the Euclidean
Algorithm). If any of them does, we know thatn is com-
posite. The key to the algorithm is thatif n is composite
andan−1 = 1, it is reasonably likely that there will be a
common factor with one of these numbersa2is − 1.

7

Here we sketch the argument that ifn is composite and
an−1 = 1 modulon, one of the numbersa2is − 1 is likely
to have a nontrivial common factor withn. (The full ar-
gument is in [CLRS].) We’ll assume thatn = pe1

1 . . . p
ek
k

where eachpi is prime. We viewa as a sequence(a1 . . . , ak).
If any ai is divisible bypi, an−1 will not be 1 and we will
find thatn is composite. So eachai is in Z∗

p
ei
i
.

It is unlikely thatas = 1 modulon, because for eachi, as
i

is equally likely to be any of thes’th powers inZ∗
pi

ei, and
there are at least two of these because they include−1
and1. So the sequenceas, a2s, . . . , an−1 probably starts
as something other than(1, 1, . . . , 1) but definitely fin-
ishes as(1, 1, . . . , 1). What we need to happen is that one
of these numbers is a sequence that containssomebutnot
all entries of 1. The argument we’ll skip (which you may
use on HW#3 without further proof) says that the chance
of this happening is at least1/2 – the only way it could
fail to happen is if the sequence starts as all ones or if all
the non-ones become onesat the same time.

If somea2is is a sequence with an entry of 1 and an entry
that is not 1, thena2is − 1 has an entry of 0 and an entry
that is not 0. That means that one of the primespi divides
it, but n itself does not. So it shares a factor withn.

8

As with the Schwartz algorithm, we have a test with one-
sided error – we might identify a composite number as
prime, but not a prime number as composite. We can in-
crease our confidence in our answer by running several
independent trials – running the algorithm with several
differenta’s and the samen. If n is prime, all the trials
will say so. Ifn is composite, the chance thatt indepen-
dent trials will say that it is prime is at most2−t.

Before the deterministic poly-time primality test, it was
still known that there is aLas Vegaspoly-time algorithm
for primality – one that always gets the right answer but
only hasexpectedpolynomial time. This was because
Adelman and Huang developed poly-time Monte Carlo
algorithm with one-sided errorin the other direction. Their
algorithm always identifies composite numbers as com-
posite but has a small chance of identifying a prime num-
ber as composite. The Las Vegas algorithm simply con-
sists of running both Miller-Rabin and Adelman-Huang
tests onn until one of them gives an answer than can
be absolutely relied upon. There is no limit in principle
on how many trials it might take for this to happen, but
theexpectednumber is a constant (no more than2 if the
individual success probabilities are at least1/2).

9

CMPSCI611: Bounding the Tail of a Distribution Lecture 14

There is a problem with “expected value” results for run-
ning time – by themselves they give us no guarantee that
any individual run of the algorithm might not be arbi-
trarily bad. If we are worried about the “worst plausible
case”, rather than the absolute worst case, we would like
to have results of the form “the time is less thanT (n)
with probability1 − ε”. In the remainder of this lecture
we’ll look at some general techniques to get results of
this kind.

First a general example that we’ll analyze in anad hoc
way. Suppose we haven bins andm balls, and we throw
each ball independently into a uniformly chosen random
bin. (This is the same situation as thecoupon collector’s
problem, where we ask how largem should be before it
is likely that all the bins have at least one ball.) Here our
problem is to estimate the number of balls in thelargest
bin (the one with the most balls) in the casem = n.

10

Theaveragenumber of balls in each bin is exactly 1, of
course, but it’s very unlikely that they wind up distributed
exactly evenly. What we’ll do here is find a numberk
such that the probability thatany of the bins getsk or
more balls is small. Another argument, that we’ll omit
here, shows that it’s likely that some bin gets at least
k′ balls, wherek′ = Ω(k), giving us a tight asymptotic
bound on the largest number.

Let’s fix k and compute the probability that a particular
bin, numberi, getsk or more balls. There are

(
n
k

)
different

sets of exactlyk balls, and each set gets sent entirely to
bin i with probabilityn−k. These various events overlap,
but we canoverestimatethe total probability that bini
getsk balls as

(
n
k

)
n−k.

11

We can estimate
(
n
k

)
as between(n/k)k and(ne/k)k. The

lower bound is true because
(
n
k

)
is n

k ·
n−1
k−1 · . . . ·

n−k+1
k−k+1 and

each of thesek factors is at leastn/k. The upper bound
is true because

(
n
k

)
≤ n/k! and by Stirling’s formula,k!

is at most(k/e)k.

So our upper bound on the probability that bini getsk or
more balls is(ne/k)kn−k = (e/k)k. This gets smaller as
k increases. We need to pickk large enough that it is at
mostn−2. Then by theunion bound, the probability that
anybin gets this many items is at most1/n.

The proper value ofk turns out to be about2e ln n
ln ln n . The

function log n
log log n tends to show up a lot in this sort of argu-

ment, in part because (up to asymptotics) it is the inverse
function ofnn andn!.

12

If we know that a random variable never takes on a neg-
ative value, then there is an obvious limit to how often it
can be much greater than its mean, given byMarkov’s
Inequality .

Suppose you are designing a random variableX with
E[X] = µ, and you want to maximize the probability
that X is at least as great as some boundα. It doesn’t
help you to ever make it more thanα, or between0 and
α, so you are best off making itα with some probabil-
ity p and0 with probability 1 − p. This means that the
expected valueE[X] is pα, so the value ofp that makes
E[X] = µ is justµ/α.

More formally, the probability thatX ≥ α cannot be
greater thanµ/α because then the expected value calcu-
lation would include a component of probability greater
thanµ/α of an event withX ≥ µ, which would make the
expected value greater thanµ (since no other component
could subtract from this one asX is non-negative).

13

We can apply Markov’s Inequality to get a better bound
on the tail of a random variable if we know itsvariance.
If X is a random variable with meanµ, its variance is the
expected value of(X − µ)2. We write the variance asσ2,
because it is convenient to work with its square root, the
standard deviationof x.

Suppose you are designing a random variable with mean
µ and varianceσ2, and you want to maximize the prob-
ability that X is at least a certain distancet away from
its mean. The natural thing is to makeX eitherµ + t,
µ, or µ − t, because it adds unnecesarily to the variance
to makeX further thant from the mean, or to have it
deviate at all from the mean if it won’t help the desired
probability.

To make the meanµ, the probability ofµ + t andµ − t
must be the same – call itp/2. Thus(X − µ)2 is equal
to t2 with probabilityp and equal to 0 otherwise, so the
variance ispt2 and we make the variance equal toσ2 by
settingp to (σ/t)2.

14

Formally, if the probability that|X − µ| ≥ t is p, this
is also the probability that the non-negative random vari-
able (X − µ)2, which we know to have meanσ2, is at
leastt2. By Markov’s Inequality,p cannot be greater than
(σ/t)2. We call this resultChebyshev’s Inequality.

Another way to say this is that the probability of a ran-
dom variable beingk or more standard deviations away
from its mean is at most1/k2. You may recall that the
probability of anormal random variable beingk or more
standard deviations away from its mean decreases expo-
nentially withk. In the next lecture we’ll look atCher-
noff Bounds, which show that a similar exponential bound
holds for the sum of independent copies ofbinomial ran-
dom variables.

In the next lecture we’ll also look at three ways to com-
pute themedian of a set of numbers, and use Cheby-
shev’s Inequality to analyze the one that is (on average)
the fastest.

15

