CMPSCI611: Primality Testing Lecture 14

One of the most important domains for randomized al-
gorithms isnumber theory, particularly with its appli-
cations tocryptography. Today we’ll look at one of the
several fast randomized algorithms fwmality testing,

but let’s first set some context.

When we operate on very large integers, our normal mea-
sure of the input size is the number of bits required to
store the numbertog n for an integem. In practice we
might store the integer in a list of machine words, as in
the JavaBignum class, but since only a constant number
of bits will fit in a machine word((logn) is still a good
measure of the size of.

We can add, subtract, multiply, or divide large numbers
In time linear or nearly linear in their size. We can run
the Euclidean algorithm on two numbers and thus find
whether they have a common factor. But other opera-
tions that we take for granted on small integers appear to
become much harder on large ones.



How do we test small numbers to see whether they are
prime? Using the definition, we get thieal division
method, where we try every number franthrough./n

to see whether it divides exactly. This take$)(y/n)
time, which looks promising until you realize that this
time isexponentiain log n. Until recently, nodetermin-
istic algorithm was known that ran ifiogn)°") time.
This theoretical challenge was met in 2004 by Agrawal,
Kayal, and Saxena, who have an algorithm that does it in
aboutO((log n)'*/?) and probably somewnhat faster, about
O((logn)%). (A very readable August 2005 version of the
paper is posted on Agrawal’s web site at IIT Kanpur.) But
their algorithm is not used in practice, because the ran-
domized ones are much faster and give arbitrarily high
confidence in their answers.



One of the most important uses for primality testing is
In generating primes, particularly for use in public-key
cryptography. Th@rime number theorem says that the
number of primes less thanis about.*, so if you can
testO(k) randomk-bit numbers you will probably find a
prime.

The problem ofactoring a large composite number ap-
pears to be much harder than primality testing. The secu-
rity of the RSA cryptosystem depends absolutely on this
difficulty, because the public key is the product of two
large prime numbers and messages can be decoded with
knowledge of the two individual primes.

In 1994 Peter Shor published an algorithm that would
factor numbers in polynomial time oncuantum com-
puter, a generalization of randomized computation that
may or may not ever be practical. Researchers at IBM
In 2001 were able to implement the algorithm to factor
the number 15 (turns out it's 3 times 5), but scaling it up
poses technical problems.



Understanding the randomized algorithm requires a bit
of algebra. Ifn Is any numberZ, is the ring of integers
modulon. We defineZ’ to be the integers modulothat

are relatively prime ta, viewed as a group under multi-
plication. Ifn is prime,Z’ is a group ofrn — 1 elements.

(It is a cyclic group, meaning that there is an element
such that every other element is a powen ot his is the
meaning of “discrete logarithm” — §* = b we say that

IS the log ofa (with respect tgy).)

If n Is not prime, some of the numbers modulare not
relatively prime ton, andZ; has fewer tham — 1 ele-
ments. For example, it = pg andp andq are primeZ’*
has(p — 1)(¢ — 1) elements. (By the Chinese Remainder
Theorem/Z, is isomorphic to the product &, for each
maximal prime-power divisgyr® of n, andZ’ is similarly
the product of the grouds’..)



The basic idea of the randomized algorithm is simple.
Choose a random numberin Z,, and compute:” !
modulon. (How? Repeated squaring, reducing each
product modulor so we only deal with numbers iA,,.
This takeO(log n) multiplications.)

If n is prime, then as long as is in Z*, "' will be

1. This is because any element of a group, raised to the
order of the group, gives the identity. Our random choice
couldbe0, of course, but that is vanishingly unlikely.

If n Is composite, however, we have a reasonable hope
that the random numbet, raised to a power that i1sot

the order of its group, should be random.aff! is not

1, we have groof thatn is not prime, though this still
gives us no clue how to factor it. The technical difficulty
of the randomized tests is in determining when we could
get a “false positive” for primality — a numberwhere
a"~! = 1 even thougm is composite.



Unfortunately, perhaps, there are composite numhers
for which anya in Z* satisfiesa”~! = modulon. These
are calledCarmichael numbersand there are infinitely
many of them, each (as it happens) a product of exactly
three primes. If we choose a randemn Z,,, we have

a small chance of finding one that has a common factor
with n, but for the product of threarge primes this is
vanishingly unlikely.

The smallest Carmichael number is 561, which factors
as3 - 11 - 17. (Another interesting one is “Ramanujan’s
taxicab number”1729 = 7 - 13 - 19, which is also the
smallest number that is the sum of two cubes in two dif-
ferent ways. But | digress.)

We can think of a number 55, as a triple of numbers

INn Zs x Z1; X Zy7. For example, 43 can be viewed as
(1,10,9) becausel3 = 1 mod 3,43 = 10 mod 11, and

43 = 9 mod 17. The numbers that are not4j,, are
those rare numbers that have a zero in one of the three
components. When we raise a number to a power, we
raise each component to that power with respect to its
particular modulus.



What is(1, 10,9)°%°? Modulo a primep, any number to
thep—1 poweris 1. S@1,10,9)°0 = (179 (1019)¢ (916)%) =
(1,1,1). As you can see, becaug8e- 1, 11 — 1, and

17 — 1 all happen to divide 560anya € Z};, satisfies
a*® = 1. So our simple randomized test does not work
for this prime, or in fact for any Carmichael number.

The Miller-Rabin test is a randomized variant of this
simple test that actually does work. We take our random
a and check whether"~! = 1 modulon. If this is false,

of course we know that is not prime. If it is true, we
write n — 1 as2’s, wheres is odd. (We know that is at
least 1, because if — 1 were odd we would know thait

IS even and thus not prime.)

Our test is to calculate the numbers a®*, a*, ... ,a" !,
each modulo, and see whether any of themnus one
has a nontrivial common factor with (by the Euclidean
Algorithm). If any of them does, we know thatis com-
posite. The key to the algorithm is thét: is composite
anda"! = 1, it is reasonably likely that there will be a
common factor with one of these numbers — 1.



Here we sketch the argument thatiis composite and
a"~' = 1 modulon, one of the numbers** — 1 is likely
to have a nontrivial common factor with (The full ar-
gument is in [CLRS].) We'll assume that= pi'...p;"
where each; is prime. We view: as a sequende; . .., a).
If any q; is divisible byp;, a"~* will not be 1 and we will
find thatn is composite. So eaah) is in Z;?.

It is unlikely thata® = 1 modulon, because for eacha’
Is equally likely to be any of the'th powers inZ, ;, and
there are at least two of these because they inclitle

and1l. So the sequenc€,a®,...,a" ! probably starts
as something other than, 1,...,1) but definitely fin-
Ishes agl,1,...,1). What we need to happen is that one

of these numbers is a sequence that consonssbut not

all entries of 1. The argument we’ll skip (which you may
use on HW#3 without further proof) says that the chance
of this happening is at lea$y2 — the only way it could
fail to happen is if the sequence starts as all ones or if all
the non-ones become onaisthe same time

If somea?* is a sequence with an entry of 1 and an entry
that is not 1, them?*® — 1 has an entry of 0 and an entry
that is not 0. That means that one of the primgdivides

It, butn itself does not. So it shares a factor with



As with the Schwartz algorithm, we have a test with one-
sided error — we might identify a composite number as
prime, but not a prime number as composite. We can in-
crease our confidence in our answer by running several
Independent trials — running the algorithm with several
differenta’s and the same. If n is prime, all the trials
will say so. Ifn Is composite, the chance thanhdepen-
dent trials will say that it is prime is at moat®.

Before the deterministic poly-time primality test, it was
still known that there is &as Vegaspoly-time algorithm

for primality — one that always gets the right answer but
only hasexpectedoolynomial time. This was because
Adelman and Huang developed poly-time Monte Carlo
algorithm with one-sided erram the other directionTheir
algorithm always identifies composite numbers as com-
posite but has a small chance of identifying a prime num-
ber as composite. The Las Vegas algorithm simply con-
sists of running both Miller-Rabin and Adelman-Huang
tests onn until one of them gives an answer than can
be absolutely relied upon. There is no limit in principle
on how many trials it might take for this to happen, but
the expectedchumber is a constant (no more tharf the
individual success probabilities are at legst).



cvpscisr: Bounding the Tail of a Distribution  Lecture 14

There is a problem with “expected value” results for run-
ning time — by themselves they give us no guarantee that
any individual run of the algorithm might not be arbi-
trarily bad. If we are worried about the “worst plausible
case”, rather than the absolute worst case, we would like
to have results of the form “the time is less th&m)

with probability1 — ¢”. In the remainder of this lecture
we’ll look at some general techniques to get results of
this kind.

First a general example that we’ll analyze in a&ah hoc
way. Suppose we havebins andm balls, and we throw
each ball independently into a uniformly chosen random
bin. (This is the same situation as tt@upon collector’s
problem, where we ask how large should be before it

IS likely that all the bins have at least one ball.) Here our
problem is to estimate the number of balls in tAsyest

bin (the one with the most balls) in the case= n.

10



Theaveragenumber of balls in each bin is exactly 1, of
course, but it's very unlikely that they wind up distributed
exactly evenly. What we’ll do here is find a number
such that the probability thatny of the bins gets: or
more balls is small. Another argument, that we’ll omit
here, shows that it’'s likely that some bin gets at least
k' balls, wherek’ = Q(k), giving us a tight asymptotic
bound on the largest number.

Let’s fix £ and compute the probability that a particular
bin, numbeti, getsk or more balls. There af@) different
sets of exactlyt balls, and each set gets sent entirely to
bin ¢ with probabilityn~*. These various events overlap,
but we canoverestimatdhe total probability that bir
getsk balls as(})n".

11



We can estimat€) as betweerin/k)" and(ne/k)*. The
lower bound is true becau$g is 7 - = - ... - 7= and
each of thesé factors is at least/k. The upper bound
is true becaus€!) < n/k! and by Stirling’s formulaj!
is at mostk/e)".

So our upper bound on the probability that bupetsk or
more balls isne/k)n™" = (e/k)*. This gets smaller as
k increases. We need to piéklarge enough that it is at
mostn 2. Then by thaunion bound, the probability that
anybin gets this many items is at mastn.

The proper value ok turns out to be abm%f%f. The
functionblgﬂgogl tends to show up a lot in this sort of argu-
ment, in part because (up to asymptotics) it is the inverse
function ofn™ andn!.

12



If we know that a random variable never takes on a neg-
ative value, then there is an obvious limit to how often it
can be much greater than its mean, givenMsrkov’s
Inequality .

Suppose you are designing a random variaklevith
FE|X| = u, and you want to maximize the probability
that X is at least as great as some boundlt doesn'’t
help you to ever make it more than or between) and
«, SO you are best off making it with some probabil-
ity p and0 with probability 1 — p. This means that the
expected valué’| X| is pa, so the value op that makes
E|X] = pisjustu/a.

More formally, the probability thatX > « cannot be
greater than./« because then the expected value calcu-
lation would include a component of probability greater
thany /« of an event withX > p, which would make the
expected value greater thar(since no other component
could subtract from this one a§ is non-negative).

13



We can apply Markov’s Inequality to get a better bound
on the tail of a random variable if we know Ng&riance.

If X is arandom variable with mean its variance is the
expected value ofX — ). We write the variance a#’,
because it is convenient to work with its square root, the
standard deviation of z.

Suppose you are designing a random variable with mean
1 and variancer?, and you want to maximize the prob-
ability that X is at least a certain distan¢eaway from

its mean. The natural thing is to maké either . + t,

1, or u — t, because it adds unnecesarily to the variance
to make X further thant from the mean, or to have it
deviate at all from the mean if it won't help the desired
probability.

To make the meap, the probability ofy + ¢t andu — ¢
must be the same — calljit/2. Thus(X — u)? is equal
to t* with probability p and equal to 0 otherwise, so the
variance ispt? and we make the variance equaltoby
settingp to (o /t)°.

14



Formally, if the probability thatX — p| > t is p, this

IS also the probability that the non-negative random vari-
able (X — p)*, which we know to have meaw’, is at
leastt>. By Markov’s Inequalityp cannot be greater than
(o/t)?. We call this resulChebyshev’s Inequality.

Another way to say this is that the probabillity of a ran-
dom variable being: or more standard deviations away
from its mean is at most/k*. You may recall that the
probability of anormal random variable being or more
standard deviations away from its mean decreases expo-
nentially with k. In the next lecture we’ll look aCher-

noff Bounds, which show that a similar exponential bound
holds for the sum of independent copiedbofomial ran-

dom variables.

In the next lecture we’ll also look at three ways to com-
pute themedian of a set of numbers, and use Cheby-
shev’s Inequality to analyze the one that is (on average)
the fastest.

15



