
CMPSCI611: Randomized Algorithms Lecture 12

All of the algorithms we have seen thus far (at least when
fully coded) aredeterministic, in that they will always
behave the same way on the same input. There is some-
times an advantage torandomized algorithms, which
arenondeterministic and make their choices randomly.
We will see that randomization may provide a faster or
simpler solution than the best known deterministic algo-
rithm.

Randomization should not be confused with the idea of
average-case analysis, though the two areas share some
of the same mathematical tools. The average-case com-
plexity of a problem is defined in terms of some prob-
ability distributionon the possible inputs. This always
raises the question of whether this distribution accurately
represents the natural occurrence of the inputs.

1



In a randomized algorithm the choices are madeby the
algorithmand the distribution of the choices is well-defined.
We normally analyze such an algorithm in terms of the
worst-case expected complexity. For example, suppose
that on inputx and choice sequencec the algorithm takes
T (x, c) time. The expected running time on a particular
input x is T (x) = Ec(T (x, c)), which is the sum over all
c of Pr(c)T (x, c). The overall worst-case expected run-
ning timeT (n) is the maximum, over allx of sizen, of
T (x).

In aLas Vegasrandomized algorithm, the answer is guar-
anteed to be correct no matter which random choices the
algorithm makes. But the running time is a random vari-
able, making the expected running time the most impor-
tant parameter. Our first algorithm today, Quicksort, is a
Las Vegas algorithm.

2



In a Monte Carlo randomized algorithm, on the other
hand, the running time is bounded for all possible choices,
but onlymostof the choices lead to the correct answer. If
the algorithm is to be practical, we need to either:

• Have a way of checking an alleged answer to confirm
that it is right. In this case we can repeat the Monte
Carlo algorithm until we get a confirmed answer –
this becomes a Las Vegas algorithm.

• Repeat the Monte Carlo algorithm many times and
draw a conclusion from the distribution of the an-
swers. For example, if the answer is a bit and we
know that3/4 of the random choices give the right
answer, we will show that it is overwhelmingly likely
that the majority answer of many trials of the algo-
rithm will be correct. With the Karger algorithm later
in this lecture, we will need a more subtle analysis to
get high confidence of our answer.

Of course when we repeat the same algorithm on the
same input, we will need to know that the random choices
in the various trials areindependent of each other, so
that we can use the tools of statistics to draw conclusions
from the answers.

3



CMPSCI611: Quicksort Lecture 12

Quicksort is one of the basic sorting algorithms normally
encountered in a data structures course. The idea is sim-
ple:

• Choose a pivot elementp

• Divide the elements into those less thanp, those equal
to p, and those greater thanp

• Recursively sort the “less than” and “greater than”
groups

• Assemble the results into a single list

The algorithm as written here isunderspecifiedbecause
we haven’t said how to choose the pivot. The choice turns
out to be important! Any pivot will have some number
k of elements less than it, and thus at mostn − k − 1
elements greater than it. The non-recursive parts of the
algorithm pretty clearly takeO(n) time. We thus get a
recurrence:

T (n) ≤ T (k) + T (n− k − 1) + O(n)

4



T (n) ≤ T (k) + T (n− k − 1) + O(n)

We can’t analyze this recurrence without knowing some-
thing aboutk. The worst case is whenk = 0 or k = n−1
– when the pivot element is the largest or smallest in the
set. The recurrence then becomesT (n) = T (n − 1) +
O(n), which has solutionO(n2), very bad for a sorting
algorithm.

But if we always knew that the pivot was the median el-
ement, we would have a recurrenceT (n) = 2T (n/2) +
O(n), which we know solves toT (n) = O(n log n), the
best we can hope for asymptotically for a comparison-
based sorting algorithm.

Wait a minute, didn’t we say we could find the median in
linear time? We can, and we will in a few lectures, but
it’s not verygoodlinear time. The bad constant gives us
a bad constant in theO(n log n) time. And since the great
virtue of Quicksort is that its running time is better than
the otherO(n log n) sortsin its constant factor, this is not
the way to go.

5



The pivot-choosing method we will analyze is the most
natural randomized one – we choose a pivot uniformly at
random from all the items in the range we are currently
sorting. In the real world wedon’t do this, because get-
ting random numbers is relatively expensive. A typical
scheme is to take the first, last, and middle element and
choose the median of those three, which we can find with
three comparisons.

If the order on the inputs is uniformly distributed, it doesn’t
matter how we choose the pivot – the expected result will
be the same as for the randomized algorithm because
the element we choose is equally likely to belong any-
where in the range. But choosing the first or the last el-
ement runs badly on some very likely orders, and even
the median-of-three can run badly on a plausible set of
orders.

For more about real Quicksort, see the following paper, a
classic of the computer science literature:

Bentley and McIlroy, “Engineering a Sort Function”,Soft-
ware Practice and Experience, June 1993.

6



Here we will analyze the expected number of compar-
isons taken by the randomized version of Quicksort and
show that it isO(n log n). The intuition behind this result
is clear. If the pivot were always in the middle half of the
input, each sublist would have at most3n/4 elements,
and the depth of our recursion would beO(log n). (Note
that the Master Theorem wouldnotproveO(n log n) here,
asT (n) = 2T (3n/4) solves toO(nlog4/3 2), which is worse
than quadratic.) Each item would be affected at most
O(log n) times, so the total time would beO(n log n). It’s
not true that all the pivots are in the middle half, buthalf
of themare, and the others don’t do anyharm, so we
should getO(n log n). But we’ll carry on with the more
precise and more elegant argument from the notes.

The clever idea is to look at an arbitrary pair of elements
and determine the probability that they will be compared
in the course of the algorithm. Once we have this, we can
uselinearity of expectationsto find the overall expected
number of comparisons.

7



We let Zij be 1 if items i and j (in the true order) are
ever compared, and0 if they are not. The total number
of comparisons is∑i<j Zij, and thus the expected total
number is the sum of the expected values of the variables
Zij. (Expected values addwhether or notthe random
variables are independent.)

But becauseZij has value 0 or 1, its expected value is just
the probability that it is 1. We can compute this fromi
andj. Consider the elements fromi throughj in the true
order. Ifi or j is the first element in this range chosen as a
pivot, we will then comparei andj. If one of thej−i−1
other elements is chosen first,i will never be compared
with j because they will go on different sides of the par-
tition on that pivot. This tells us that the probability, and
thus the expected value ofZij, is 2

j−i+1.

8



Our expected number of comparisons is the sum, over all
pairs{i, j} with 1 ≤ i < j ≤ n, of 2

j−i+1. For eachi, we
have the sum over allj > i of 2

j−i+1, which is

2[1 + (1/2) + (1/3) + . . . + (1/(n− i + 1)],

which is bounded above by theHarmonic number

Hn =
n∑

k=1

1

k
< ln n.

Since we have at most2 ln n expected comparisons for
eachi (and replacingHn−i+1 by ln n was not a big over-
estimate), our total expected number of comparisons is
at most2n ln n and probably not much less than that. We
have established anO(n log n) bound, and have evidence
of a rather small constant.

9



CMPSCI611: Karger’s Min-Cut Algorithm Lecture 12

We now turn to a randomized algorithm to find amin-
imum cut in an undirected graphG = (V, E). Here a
cut is defined to be a set of edgesC such that(V, E \ C)
is not connected, and a minumum cut has the minumum
number of edges (unlike the minimumcapacitycuts we
studied in flow networks).

So the minimum cut of an unconnected graph is the empty
set, and the size of the minimum cut is at most the mini-
mum degree of any vertex (since cutting all the edges at
one vertex separates it from the rest of the graph). This
looks like the network flow problem, and in fact we can
use network flow to find the minimum cut as follows: Fix
a vertexs, and for eacht set up a flow network froms to
t with unit capacity in each direction for each undirected
edge inE. The maximum flow in each network gives us
a minimum cut among those that separates from thatt,
and the minimum among thesen − 1 cuts is a minimum
among all cuts.

10



This is a poly-time algorithm, but recall that our imple-
mentation of Ford-Fulkerson with the Edmonds-Karp heuris-
tic took O(e2n) time, which isO(n5) for a dense graph.
Thus it might take usO(n6) to find the minimum cut.
There is a better network-flow algorithm due to Karzanov
that runs inO(n3), but this still gives us onlyO(n4) for
the minimum cut.

Karger’s Algorithm is a simple randomized method that
usuallyfinds the minimum cut. It is a Monte Carlo algo-
rithm, and thus has some probability of giving the wrong
answer, but we will show how to adjust the algorithm
to make this probability smaller than any desired limit
ε. The version we present will still takeO(n4 log(1/ε))
time, but there is a more involved version that runs in
O((n log n)2 log(1/ε)) time.

The basic idea will be to choose a cut by a random pro-
cess that has anontrivial chance of producing the mini-
mum cut, specifically at least2/n2. If we run the basic
procedure repeatedly, with independent random choices,
the probability that the minimum of the resulting cuts is
an actual minimum increases in a way that we can ana-
lyze.

11



The basic algorithm is simple. We maintain anundi-
rected multigraph that starts off as the undirected graph
G:

• While there are more than two vertices left,

• Choose an edge(u, v) uniformly at random

• Mergeu andv, preserving all edges except those
betweenu andv

• Return the edges between the last two vertices

I’ll work through an example on the whiteboard. At the
end of the algorithm we have a cut, because the two re-
maining vertices each represent a nonempty set of ver-
tices and all the edges between the two sets have been
preserved. But the cut is certainly not guaranteed to be
minimum, because any edge has some chance of being
chosen and removed.

A simple implementation of this algorithm would keep
the vertices in a union-find data structure and make a pass
through the edge list on each phase, to remove edges be-
tween equivalent vertices. This givesO(ne) = O(n3)
time for the basic algorithm. With a different data struc-
ture we can do it inO(n2) – this is an exercise inRan-
domized Algorithmsby Motwani and Raghavan.

12



Our main task here is to show that the basic algorithm has
a nontrivial, at least2/n2, chance of returning a minimum
cut. Suppose thatC is a particular minimum cut withk
edges. Since every vertex of the graph has degree at least
k, there are at leastkn/2 edges and the probability that an
edge ofC is the first one chosen is at mostk/(nk/2) =
2/n.

If all the edges ofC have survived to a later point in
the algorithm where there are` vertices remaining, then
because the degree of the graph is still at leastk we have
at most a probability ofk/(k`/2) = 2/` that an edge of
C will be the next one chosen. We can thus place a lower
bound on the probability thatC will survive the entire
process. There is at least a1− (2/n) chance of surviving
the first choice,1 − (2/(n − 1)) of surviving the second
given that it survives the first, and so on:

P ≥ n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· . . . · 2

4
· 1

3

The firstn− 4 terms on the top cancel with the lastn− 4
terms on the bottom, to give2·1

n(n−1) which is greater than
2/n2.

13



The chance that a single run of the basic Karger algo-
rithm will return the wrong answer is thus high, but no
higher than1 − (2/n2). We now have to calculate, for a
given ε, how many times we have to run the basic algo-
rithm to be assured that the chance thatall the answers
are wrong is less thanε.

Since the probabilities of independent events multiply,
the probability ofm wrong answers in a row (each of the
m runs returning a cut other thanC) is at most

1 − 2

n2


m

.

Remember that ifx is much less than 1,ex is very close
to 1 + x. In particular,(1 + x)1/x is less than but very
close toe. What we need here is the similar fact that
for any positive numberk, (1 − 1

k)k is smaller than1/e.
Hence if ourε is 1/e, we can setm to ben2/2 and have
an error probability less thanε. By settingm to 50n2,
for example, our error probability goes down toe−100, a
safely small probability.

14


