
Details of Seidel’s Algorithm

Last time we presented the following algorithm to com-
pute the shortest-path distance matrix of a connected, un-
weighted, undirected graph:

• ComputeM [G2] in O(µ(n)) time.

• If M [G2] is all ones off the diagonal, return the an-
swer.

• Otherwise computeD′[G] = D[G2] recursively.

• ComputeP [G] fromD′[G] in timeO(µ(n)) by a method
to be given later.

• ReturnD[G] = 2D′[G] − P [G].

We prove correctness by induction on thediameter of
G, the largest entry of the matrixD[G] (this of course
can be at mostn − 1). If the diameter is at most2, then
M [G2] must have ones off the diagonal, sinceG2 is a
complete graph. In that caseM [G] andM [G2] give us
all the information we need to computeD[G] in O(n2)
further time:D[G](i, j) is 0 if i = j, 1 if M [G](i, j) = 1,
and2 otherwise.

1

If the diameter ofG is greater than2, note that the diame-
ter ofG2 must besmaller. (In fact it is the ceiling of half
the diameter ofG, because every entry ofD[G2] is the
ceiling of half the corresponding entry ofD[G].) By the
inductive hypothesis, then, we may assume thatD′[G] is
computed correctly.

Every entry ofD[G] is either twice the corresponding en-
try of D′[G], or twice that entry minus one. The matrix
P [G] tells us which case is true for each entry.

2

Timing of Seidel’s Algorithm

Let T (n, d) be the time taken by Seidel’s algorithm on a
graph withn vertices and diameter at mostd.

First note thatT (n, 2) = O(µ(n)) because if the diameter
is at most2, we find this out by doing only one boolean
matrix multiplication, and this takes timeO(µ(n)).

Then observe that ford > 2, we have the recurrence
T (n, d) ≤ T (n, dd/2e) + O(µ(n)). This is easy to solve:
Ford a power of2, and hence for generald,

T (n, d) = O(µ(n) log d)

and hence for any graph ofn vertices,

T (n) = O(µ(n) log n).

3

We now have to fill in details of the algorithm:

• ComputeM [G2] in O(µ(n)) time.

• If M [G2](i, j) = 1 wheneveri 6= j, return the answer.

• Otherwise computeD′[G] = D[G2] recursively.

• ComputeP [G] fromD′[G] in timeO(µ(n)) by a method
we’re about to present.

• ReturnD[G] = 2D′[G] − P [G].

We showed that the algorithm is correct and runs in a time
of O(µ(n) log n), assuming that we can computeP [G]
from D′[G] in O(µ(n)) time. Recall thatP [G] is the ma-
trix whose(i, j) entry is1 iff the shortest-path distance
from i to j is odd.

4

We will need oneinteger matrix multiplication for our
computation. We takeD′[G], which records the distances
in G2, and multiply it byA, the adjacency matrix ofG.
Let’s look at the resultX and its entry for some pair of
verticesi andj (with i 6= j).

The entryX(i, j) is the sum, over all verticesk adjacent
to j, of the distance inG2 from i to k. Let c be the degree
of j and letd = D′[G](i, j). We will show:

• If P [G](i, j) = 1, thenX(i, j) < cd, and

• If P [G](i, j) = 0, thenX(i, j) ≥ cd.

Since we havec andd available, then, computingX will
give usP [G] directly.

5

• If P [G](i, j) = 1, thenX(i, j) < cd, and

Proof: The actual distance fromi to j in G must be2d−
1, since it is odd and half of it rounded up tod. The
verticesk adjacent toj must have distances toi of either
2d−2, 2d−1, or 2d, since these distances can only differ
from 2d − 1 by one. Furthermore, at least onek, the
one on the shortest path fromi to j, must haved(i, k) =
2d− 2. ThusX(i, j) consists of the sum ofc distances in
G2 that are eitherd− 1 or d, with at least oned− 1.

• If P [G](i, j) = 0, thenX(i, j) ≥ cd.

Proof: In this case the distance inG from i to j must be
2d, since it is even and half of it rounded tod. For any
k adjacent toj, then, the distance fromi to k is either
2d− 1, 2d, or 2d + 1. The corresponding distances inG2

are thus all at leastd, and thusX(i, j) is at leastcd.

6

The Network Flow Problem

We now turn to a graph problem somewhat similar to the
ones we have seen, with a wide variety of applications.

A flow network is a directed graph where each edge
(u, v) has a positive weightc(u, v) called acapacity, and
two distinct nodes are designated as thesources and the
sinkt. A flow on the network is a functionf from V ×V
to the reals that satisfies three rules:

• for any distinct verticesu andv, f (u, v) = −f (v, u)

• for anyv excepts or t, the sum over allu of f (u, v)
is 0

• for anyu andv, f (u, v) ≤ c(u, v) (where if (u, v) 6∈
E, c(u, v) = 0)

We can think of the flow as a movement of stuff through
the network. The first condition says that if we have
both an edge and its reversal, we consider only the net
movement between the vertices, with the sign giving its
direction. The second condition says that stuff cannot
be created or destroyed at intermediate vertices - in fact
some will normally be created at the source and an equal
amount destroyed at the sink. The third condition ex-

7

plains the capacity – we cannot have more flow over an
edge than the capacity allows.

8

Consider arbitrary verticesu andv. If there is only an
edge(u, v) in one direction with capacitya, the flow
f (u, v) must be in the range from0 througha. If there is
also an edge(v, u) with capacityb, then the flowf (u, v)
must be in the range from−b througha.

Thesizeof the flow is the sum of the edge flows out of
s, which must equal the sum of the edge flows intot.
(Can you prove this quickly?) Themax-flow problem is
to input a flow network and find a flow whose size is as
large as possible.

The central notion in our analysis of flow networks is the
cut. A cut is a partition ofV into two disjoint setsA and
B with s ∈ A andt ∈ B. Given a flowf , theflow across
a cut(A, B) is the sum, for allu ∈ A and allv ∈ B. of
f (u, v).

9

Lemma: For any cut(A, B) and any flowf , the flow
across the cut equals|f |, the size of the flow.

Proof: We use induction on the size ofA. If |A| = 1, the
flow across the cut is exactly the flow out ofs which is
|f | by definition. Assume the flow across the cut(A, B)
is |f |, let v be any vertex inB except fort, and letA′ =
A∪{v} andB′ = B\{v}. The flow across(A′, B′) is the
flow across(A, B), minus the flow on edges fromA to v,
plus the flow on edges fromv to B′. This is |f | (by the
inductive hypothesis) plus the net flow intov (since every
vertex exceptv is in eitherA or B′). By the conservation
rule forv, the flow across(A′, B′) is thus|f |.

Thecapacity of a cut(A, B) is the sum, over allu ∈ A
andv ∈ B, of c(u, v). It should be clear that the flow
across a cut cannot exceed the capacity of a cut.

Corollary: The size of a flow cannot exceed the mini-
mum of the capacities of all cuts.

Our fundamental result is the converse of this corollary.

10

The Max-Flow-Min-Cut Theorem

Theorem: In any flow network, the size of the maximum
flow is exactly equal to the minimum of the capacities of
all cuts.

Proof: We have already shown that the flow cannot ex-
ceed the minimum capacity – we must show that it can
achievethe minimum capacity.

Given a flow network and a particular flowf , we define
the residual network to be the flow network where the
capacity of each edge(u, v) is cf(u, v) = c(u, v)−f (u, v)
(sincef (u, v) ≤ c(u, v), this quantity cannot be nega-
tive). (Note that an edge may occur in the residual net-
work if it either it or its reversalis in the original net-
work.) A legal flow in the residual network is thus ex-
actly a flow that may beaddedto f resulting in another
legal flow through the original network.

11

We claim that iff does not achieve the capacity of any
of the possible cuts, then there is a path froms to t in the
residual network consisting of edges with positive capac-
ities. We prove this claim by contrapositive: If there is no
path froms to t, let A be the set of nodes that are reach-
able froms in the residual network (by positive edges)
and consider the cut(A, V \ A). For everyu ∈ A and
v ∈ V \ A, we must have thatf (u, v) = c(u, v) or
else an edge across the cut would exist in the residual
network. But thenf has achieved the capacity of this
cut, and hence of the minimum cut. We have proved our
claim.

A path through the residual network is called anaug-
menting path, and the minimum of the capacities of its
edges is called itsbottleneck capacityb. If an augment-
ing path exists for a flowf , thenf cannotbe a maximum
flow, because we can add a flow of sizeb along the aug-
menting path tof and get a strictly larger flow that is still
legal.

12

The Ford-Fulkerson Algorithm

Our proof of the Max-Flow-Min-Cut Theorem immedi-
ately gives us an algorithm tocomputea maximum flow,
known as theFord-Fulkerson algorithm :

• Setf to be a zero flow.

• While the residual graph off contains an augmenting
path, find such a path, create a flow of the bottleneck
capacity along this path, and add that flow tof .

• Once there is no augmenting path, returnf .

Let’s immediately note an important consequence of this
algorithm. If the capacities of all the edges are integers,
and the edge flows are all integers, then the capacities in
the residual network are all integers and hence the bot-
tleneck capacity of any augmenting path is an integer.
Since the flow begins as a zero flow, if the capacities are
all integers the edge flows willremain integers through
the entire course of the Ford-Fulkerson algorithm. We
have proved:

Theorem: Any flow network whose capacities are all
integers has a maximum flow whose edge flows are all
integers.

13

One phase of this algorithm takes only polynomial time –
we needO(e) time to search (depth-first or breadth-first)
for the augmenting path, thenO(n) to update the residual
graph to reflect the newf . But it’s not immediately clear
how many phases we might need to reach a maximum
flow. The only obvious bound is|f |, in the special case
where the capacities are integers, since we know that the
flow will increase by at least one each time (the bottle-
neck capacity must be a positive integer). Of course|f |
could be much larger thann. Could the performance of
Ford-Fulkerson be that bad? In fact it could:

(a)
ˆ|\

1000 / | \ 1000
/ | \

/ 1| \
/ | V

(s) | (t)
\ | ˆ

\ | /
1000 \ | / 1000

\ | /
VV/
(b)

14

If we pick a first augmenting path froms to a to b to t,
the resulting residual network has a path froms to b to
a to t. We could then take a path througha andb, then
one throughb anda, and so on until we find the maximal
flow of size 2000 only after 2000 phases.

It turns out that we can avoid this bad behavior by using
the Edmonds-Karp heuristic: When we pick an aug-
menting path, we always pick one that is as short as pos-
sible in terms of the number of edges – so, for example,
we could just pick one by breadth-first search.

Theorem: If the Edmonds-Karp heuristic is used, then
the Ford-Fulkerson algorithm terminates with a maxi-
mum flow after at mostne phases.

We’ll prove this theorem in the next lecture.

15

Network-Flow Applications

The Max-Flow-Min-Cut Theorem and the existance of
integer-size flows give easy proofs of some classic results
in graph theory:

Note that we did not get to the proofs of these two
results in the live Lecture #10, so they will be repeated
in Lecture #11.)

Hall’s Theorem: (early 1900’s) A bipartite graphG =
(U, V,E), with |U | = |V | = n, has a perfect matching
iff there doesnot exist a setA ⊆ U such that the set
Γ(A) = {v ∈ V : ∃u ∈ A : (u, v) ∈ E} is smaller than
A.

Proof: Set up a flow network with a nodes that has edges
of weight 1 to every node inU and a nodet that has edges
of weight 1from every node inV . Give every edge inE
weight 1. If this network has a flow of sizen, then it
has an integer flow, which must have edge values of 0 or
1, and the edges ofE used in this flow form a perfect
matching. If the network does not have such a flow, there
must be a cut(X,Y) of capacityn−1 or smaller. The set
X containss plus some nodes ofU andV . (Why must it
contain at least one node ofU?). LetA beX ∩ U . We
will show that|Γ(A)| < |A|.

16

We first modify the cut by taking any nodes inΓ(A) ∩ Y
and moving them toX. This doesn’tincreasethe capac-
ity of the cut – if y is such a vertex then the edge(y, t)
is the only one that now crosses the cut but didn’t before,
and at least one edge fromA to y no longer crosses the
cut.

Let |A| = k. Then − k edges froms to U \ A cross the
cut, as do the edges fromΓ(A) to t. This gives us at least
n− k + |Γ(k)| edges crossing the cut, so ifΓ(A) ≥ k we
have a contradiction because the capacity of the cut was
assumed to be at mostn− 1.

Here is another classic result in graph theory:

Menger’s Theorem: (1927) In any directed graph with
nodess and t, the maximum number of edge-disjoint
paths froms to t is equal to the minimum number of
edges whose removal separatess from t.

Proof: This is simply the special case of the Max-Flow-
Min-Cut Theorem when all the edges have weight 1. If
the size of the minimum cut isk, there must exist a flow
of sizek, and hence an integer flow of sizek. We can
easily divide this flow intok edge-disjoint paths froms
to t.

17

