
CMPSCI 601: Recall From Last Time Lecture 6

Boolean Syntax:

Boolean variables:
� � ���������
	���������������

A boolean variable represents an atomic statement that
may be either true or false. There may be infinitely many
of these available.

Boolean expressions:

� atomic:
��

, � (“top”), � (“bottom”)
� ��� � ��� ,  � , ��� ! ��� , �"� # ��� , ��� $ ��� , for � � �

Boolean expressions

Note that any particular expression is a finite string, and
thus may use only finitely many variables.

A literal is an atomic expression or its negation:
� �

,  � � ,
� , � .

As you may know, the choice of operators is somewhat
arbitary as long as we have a complete set, one that suf-
fices to simulate all boolean functions. On HW#1 we
argued that

� ! � � �  �
is already a complete set.
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CMPSCI 601: Boolean Logic: Semantics Lecture 6

A boolean expression has a meaning, a truth value of
true or false, once we know the truth values of all the
individual variables.

A truth assignment is a function � � � � � � #
�
true

�
false

�
, where

�
is the set of all variables. An as-

signment is appropriate to an expression � if it assigns a
value to all variables used in � .

The double-turnstile symbol � � (read as “models”) de-
notes the relationship between a truth assignment and an
expression. The statement “ � � � � ” (read as “ � models

� ”) simply says “ � is true under � ”.
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If � is appropriate to � , we define when � � � � is true by
induction on the structure of � :

� � is true and � is false for any � ,
� A variable

��
is true iff � says that it is,

� If � � �"� ! ��� , � � � � iff both � � � � and � � � � ,
� If � � �"� � ��� , � � � � iff either � � � � or � � � � or

both,
� If � � �"� # ��� , � � � � unless � � � � and � �� � � ,
� If � � ��� $ ��� , � � � � iff � � � � and � � � � are

both true or both false.

3



Definition 6.1 A boolean expression � is satisfiable iff
there exists � � � � .

� is valid iff for all � appropriate to � , � � � � . �

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

UNSATSATVALID

Proposition 6.2 For any boolean expression � ,

� � UNSAT �  � � VALID

UNSAT � VALID � VALID � UNSAT

Proposition 6.3 � � is unsatisfiable iff � � � .
� � is satisfiable iff � �	� � .
� � is valid iff � � � .
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CMPSCI 601: The Fitch Proof System Lecture 6

A Fitch proof is a sequence of expressions, each one of
which is justified in terms of previous ones. There are
twelve proof rules that tell us when a statement is justi-
fied.

Fitch has no axioms (statements assumed to be true with-
out proof) but we typically start with some premises and
reach a conclusion that follows from those premises.

If from a set � of premises we can derive � , we write � �
� , read as “ � proves � ”. This single turnstile symbol �
is not to be confused with the double turnstile symbol � � .
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CMPSCI 601: � ’s Propositional Proof Rules Lecture 6

These are conveniently listed on pages 557-9 of [BE].

! Intro: From � ����������� ��� , derive � � ! ����� ! ��� .
! Elim: From � � ! ����� ! ��� , derive � �

.
� Intro: From � �

, derive � � � ����� � � � .
� Elim: From � � � ����� � � � , if you have derived � sep-

arately from each � �
, derive � .

 Intro: If you have derived � from � , derive  � .

 Elim: From   � , derive � .

� Intro: From � and  � , derive � .

� Elim: From � , derive � (any � !)
# Intro: If you have derived � from � , derive � # � .
# Elim: From � # � and � , derive � (also called

modus ponens).
$ Intro: If you have derived � from � and have derived

� from � , derive � $ � .
$ Elim: From � $ � and � , derive � .
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CMPSCI 601: Soundness of Prop. Fitch Lecture 6

Now that we’ve defined the propositional subset of Fitch,
��� , we consider some important properties of a proof
system:

Soundness: If a statement � can be proved from a set of
statements � , then � is a tautological consequence of

� . (If � � � , then � � � � .)

Completeness: If � is a tautological consequence of � ,
then � can be proved from � . (If � � � � , then � � � .)

Compactness: If every finite subset of � can be satisified
by some assignment, then there exists an assignment
satisfying all of � .
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The intuition behind soundness is clear: each of the rules
corresponds correctly to the meaning of the symbols, so
none of them should be able to prove false things from
true premises. Our proof will follow this intuition.

Let’s restate compactness in a form that’s easier to prove
by induction:

Theorem 6.4 Let � be a statement in a proof � and let� � ��������� � � be the premises in force when � occurs. Then
any truth assignment that makes each � � true also makes

� true.

Proof: [BE] says “if the conclusion ever fails for any step
in any proof, consider the first step on which it fails”. I
would be more inclined to view proofs as being induc-
tively constructed by adding steps. In either case, it suf-
fices to prove the conclusion in the case in which every
statement of � before � is a tautological consequence of
its premises.

For � to occur in the proof, it must have been produced
by some rule. We thus are reduced to twelve cases, one
for each of the rules. We’ll do a few of these, and do a
few more in the exercises.
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! Intro:

� is of the form � � ! ����� ! ��� for statements � � in its
scope. Each of the � � is a tautological consequence of its
premises by the (inductive) hypothesis, and each of those
premises is in force for � by the scoping rules.

So any truth assignment that makes all of � ’s premises
true must make all the � � ’s true as well. And then � must
be true, by the definition of truth for statements involving! .

# Elim:

There are statements of the form � and � # � in the
scope of � . As above, each of these two statements is true
under any truth assignment that makes all the premises of

� true. By the definition of truth for statements involving# , it is not possible for � and � # � to be true when �
is false.
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# Intro:

Here � is of the form � # � and there is a subproof,
within the scope of � , of � from � . The premises in
force during that subproof were a subset of the premises
in force for � .

So in any truth assignment that makes all of � ’s premises
true, the premises for the subproof are also true. Since
the inductive hypothesis holds for � , any assignment that
also makes � true must make � true.

Thus any such assignment either makes � false or makes
� true, and by the definition of truth for # either of these
makes � # � , and this statement is � .

� Elim:

Here � is an arbitrary sentence, and the statement � is in
its scope. Since the inductive hypothesis holds for � , we
know that any assignment making the premises of � true
makes � itself true. There can thus be no such assign-
ment. But this means no assignment could make all the
premises of � true, since the premises of � are a subset
of these. The conclusion for � is thus vacuously satisfied.
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Remaining Steps: There are eight of these, with proofs
similar to the above four cases. You’ll be assigned to
write out some of these on HW#2.

�
This proof is emotionally unsatisfying in the way that
many proofs in mathematical logic are unsatisfying. We
seem to be proving that a step is valid if and only if it’s
valid, and not really saying anything at all.

The key point are that truth and provability are two differ-
ent properties, even though for sound and complete proof
systems they hold for exactly the same sentences. The
reason that this system is sound and complete is that the
proof steps correspond properly to the definitions of truth
for each operator, and vice versa. We shouldn’t be confi-
dent that this correspondence holds until we’ve checked
it in each case.
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CMPSCI 601: Completeness of Prop. Fitch Lecture 6

We’ve just shown that “everything provable is true” for
propositional Fitch. The next step is to show that “ev-
erything true is provable”. The natural thing to do would
be to construct a Fitch proof for an arbitrary tautological
consequence. Unfortunately, we don’t have a useful in-
ductive definition for tautological consequences the way
we did for proofs.

What we’ll do instead is to prove that if � is not provable
from � , then there is some truth assignment making �
true and � false.

Lemma 6.5 � is provable from � iff � is not provable
from � �

�  � �
.

A set of sentences from which you can’t prove � is called
formally consistent. A set of statements that has some
truth assignment making them all true is called tt-satisfiable.
The completeness result will follow once we show that
every formally consistent set of sentences is tt-satisfiable.
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Our proof will require one more definition. A set of sen-
tences � is called formally complete if for every sen-
tence � , either � � � or � �  � . (Note that we are
not saying that “formal completeness” has anything to
do with “completeness” – one is a property of sets of
statements and the other a property of the whole proof
system.)

We will show:

� Every formally consistent, formally complete set of
sentences is tt-satisfiable.

� Every formally consistent set of sentences can be ex-
tended to a formally complete set while remaining
formally consistent.

Since a truth assignment satisfying an extension of � also
satisfies � itself, these two statements imply that any for-
mally consistent set is tt-satisfiable, and thus imply the
completeness of propositional Fitch.
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Let’s first show that a formally consistent, formally com-
plete set of sentences is satisfiable. Suppose that � is
such a set. Let

�
be any of the variables of the sys-

tem. Since “
�

” is a sentence, we know that either � � �
or � �  � . Could both be true? No, because then by
writing both these proofs and doing one � -Intro step we
could prove � from � .

This tells us how to define our truth assignment! We set
each

� �
to be true if � � � �

and false otherwise, giving us
a mapping � from the set of variables to the set of truth
values. No truth assignment other than � could make
all of � true, but we still have to show that � itself does
makes � true.
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What we can do is to prove that for any sentence � , � �
� iff this truth assignment � makes � true. This requires
induction on the structure of sentences:

� Any � can prove � , and no formally consistent � can
prove � .

� If � is
��

or  �� it follows from the definition of the
assignment � that � is true iff � proves it.

� If � is � ! � , and � and � are each provable from � iff
they are true, we show that � is provable from � iff
both � and � are. If � is provable we can prove either� or � in one more step using ! -Elim. If we have
proofs of both � and � , we write them both down and
then prove � in one more step by ! -Intro.

� If � is  � , and � is provable iff it is true under � ,
we must show that � is. This just follows from the
definitions, as formal completeness says we must be
able to prove either � or  � , and formal consistency
says we cannot prove both.

� The cases for � , # , and $ are similar to that for ! ,
using the appropriate proof rules.
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So we have our result for formally complete and formally
consistent sets. Now we must show that if � is formally
consistent we can extend it (by adding sentences to it)
to make it formally complete while keeping it formally
consistent.

We consider the atomic variables
� �

in order, a potentially
infinite process. At stage � of our process we look at

� �
and  � � and ask whether either is provable from � as
extended so far. If one of them is already provable we
do nothing. But if neither is provable, we add

� �
(an

arbitrary choice) to � and go on.

At the end of this process, � has become formally com-
plete, because we just proved that a system that proves
each variable or its negation proves each sentence or its
negation. Could it fail to be formally consistent?
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The only way we could have destroyed the formal con-
sistency property would be when we added a variable

� �
to � . But we only did this if the former � could not prove
 � � . If there were a proof of � from � and

� �
, we could

adapt this proof to prove  � � from � alone by � -Elim –
just take

� �
as the premise in the presence of � and derive

� .

We are done! The “infinite process” might worry you a
bit, and perhaps it should. We can’t carry out this pro-
cess with any kind of finite algorithm. But all we want
to argue is that the final � exists, and it does – for any
individual

� �
, it is well-defined whether it is in the final

� or not.

To review one more time:

� If � is formally consistent we extend it to be formally
complete, and

� we then know that it settles all sentences consistently
with the assignment it places on the variables,

� so the original � is tt-satisfiable, by this assignment.
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CMPSCI 601: The Compactness Property Lecture 6

You’ve noticed that we frequently want to talk about in-
finite sets of sentences � , such as the set of all valid sen-
tences about variables

� � ��� 	 �������
or the set of all satisfi-

able sentences. Each individual statement is itself finite,
and each proof is finite, but we might worry whether a
property such as consistency is somehow different for fi-
nite and infinite sets.

Theorem 6.6 (Compactness of Propositional Logic) Let
� be a set of propositional sentences. If every finite sub-
set of � is tt-satisfiable, then � itself is tt-satisfiable.

Proof: Suppose that � is not tt-satisfiable. By the Com-
pleteness Property of � � , there exists a proof of � from

� . Since this proof is finite, it uses only a finite subset
� of the sentences of � as its premises. But then � it-
self proves � and by the Soundness Property it cannot be
tt-satisfiable. We have proved the contrapositive of the
theorem and thus have proved the theorem. �
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Note that compactness is a semantic rather than a proof-
theoretic property. Its definition for propositional logic
depended on tt-satisfiability, which depends on the notion
of a truth assignment being a model for a set of sentences.

More generally, a semantics for a logical system is a way
of defining models and whether a given model satisfies a
given set of sentences. The general compactness prop-
erty of such a system can be stated: “If every finite subset
of � has a model, then � has a model.”

Our proof of compactness for propositional logic used
no specific properties of propositional logic, only the fact
that it has a proof system that is sound and complete, and
in which every proof is finite.
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CMPSCI 601: Other Proof Systems Lecture 6

Propositional Fitch is not the only sound and complete
proof system for propositional logic. [BE] introduces an-
other system called resolution in section 17.4, and there
are many others.

The relative power of such proof systems is an active
area of study in computer science and mathematical logic.
Qualitatively, of course, any two sound and complete
systems have the same power, because they can each prove
the true tautological consequences and no others.

But quantitatively there are differences among the sys-
tems, some proved and some conjectured. For example,
there are families of tautologies that have polynomial-
size proofs in propositional Fitch but require exponential-
size resolution proofs. We won’t prove this in this course,
but we’ll later talk about how such results relate to com-
putational complexity.
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Resolution is best understood as a refutation system, a
way of showing that a particular set of sentences is not
tt-satsifiable. Express each sentence in CNF, so that it
is a set of clauses each of which must be satisfied. Of
course an AND of CNF sentences becomes a single CNF
sentence.

Resolution proceeds by adding new clauses called re-
solvents to the set of clauses, in such a way that the
tt-satisfiability of the set remains the same. The basic
rule is to take a clause containing a literal � , and another
clause containing the literal  �� , and form the resolvent
by unioning the clauses together and removing both � and
 �� . It is not hard to see that to satisfy both the original
clauses you must satisfiy the new one.

The process ends when the empty clause appears, mean-
ing that the set of clauses is no longer satisfiable, or when
further taking of resolvants does not increase the set, mean-
ing that it is.

This process can be automated and is thus sometimes
a practical theorem-prover for medium-sized problems.
[BE] says that something like it is used to implement the
TautCon instruction in Fitch.
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