
CMPSCI 601: Recall From Last Time Lecture 26

Theorem: All CFL’s are in sAC
�
.

Facts: ITADD, MULT, ITMULT and DIVISION on
� -bit integers are all in ThC

�
.

Th The following problems are complete for

PSPACE � NPSPACE � ATIME
� ����� �
	�� :

QSAT, GEOGRAPHY, SUCCINCT REACH.
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CMPSCI 601: Barrington’s Theorem Lecture 26

A permutation of a finite set � is a one-to-one onto func-
tion from � to itself, The composition of two permuta-
tions is the permutation we get by performing first one
and then the next. Composition is not commutative –
the set of all permutations of five elements form the non-
commutative group ��� with composition as the operation.

The ��� iterated multiplication problem ( ��� -MULT) is to
input � elements of ��� (in order) and determine their
composition. (As a language, it is the set of pairs ��� �
	��
such that � 
 ���� , 	�
 ��� , and � multiplies to 	 .) Clearly
a DFA can carry out the sequence of multiplications, so
��� -MULT is a regular language.

Theorem 26.1 ��� -MULT is complete for NC
�
. Specif-

ically, if � is an � -input circuit of depth � and fan-in
two, we can take a string � of length � and construct
a sequence of ��� permutations that multiplies to a non-
identity permutation iff � ����� � � .
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Notation: A five-cycle ��� ��� ��� � is the permutation that
takes � to

�
,
�

to
�
,
�

to � , � to � , and � to � , where�
a,b,c,d,e � =

�
1,2,3,4,5 � .

Lemma: There exist five-cycles 	 and 
 such that
	�
�	�
 � 
�
 � is a five-cycle. (This permutation is called the
commutator of 	 and 
 .)

Proof: � ����� ��� � � ����� ��� � ��� ����� � � ��� ����� � � � � ������� � � .
Fact: (basic group theory) If � and � are both five-
cycles, then � � ������
 � for some permutation � .
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Proof: (of Barrington’s Theorem) Use induction on the
depth � of the circuit. For each gate � we’ll construct a
sequence � ��� � such that � ��� � evaluates to the five-cycle
� ����� � � � if � evaluates to 1 and � ��� � evaluates to the iden-
tity otherwise. By the Fact, if we can get one five-cycle
we can get any other with a sequence of the same length.

Base Case: � � � and the gate is an input. Look up the
literal and let � ��� � consist of one permutation, � ��� � ��� � if
the literal is true and the identity if it is false.

NOT Gates: If � is the NOT of � , compose � ��� � with
��� � ��� � � . This gives the identity if � is true and � � � ��� � � if
� is false. Using the Fact, normalize to give � ����� ��� � if �
is true and the identity if � is false.
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AND Gates: Suppose � is the AND of � � and ��� and
each of � � and � � have depth � . Using � ��� � � and � ��� � � , we
construct four sequences of length � � each:

� � � yields � ����� ��� � if � � is true and the identity other-
wise,

� � � yields � ����� ��� � if � � is true and the identity other-
wise,

� � � yields ��� � ��� � � if � � is true and the identity other-
wise, and

� � � yields ��� ����� � � if � � is true and the identity other-
wise.

Calculation: � � � � � � � � yields � ������� � � if � � and � � are
both true, and the identity otherwise.

Conclusion: If � is a depth
� �����	� � � circuit, we get

a sequence of length � � ��

����� 	 , which is polynomial. We
have reduced the circuit evaluation problem to an � � -
MULT instance that is only polynomial size. �
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An Application to PSPACE

Fact: PSPACE is characterized by circuits of polyno-
mial depth.

Corollary: Any PSPACE problem can be reduced to
an instance of � � -MULT of length � ���

�����
.

Corollary: (Cai-Furst) Any PSPACE problem can be
solved by a log-space Turing machine that:

� has access to a read-only clock
� wipes its entire working memory every poly-many

steps, except for three safe bits.
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CMPSCI 601: Randomization Lecture 26

We see in an algorithms course that it is sometimes to
our advantage to use randomness in solving a problem.
For example, Quicksort has good average-case but bad
worst-case behavior. Flipping our own coins can (with
high probability) keep us out of the bad cases.

In a competitive situation we may be worried about our
opponent predicting our move. Flipping our own coins
may make this impossible and guarantee us some mini-
mum level of expected success.

Random sampling of a large space may give us a good
idea of the results of an impractically large exhaustive
search. There is a large body of mathematics telling us
what inferences we may reliably make from such sam-
pling.
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Is randomness a powerful tool in general? In complex-
ity theory we attack this question by looking at prob-
lems where randomization seems practical, and compar-
ing classes of such problems to deterministic and nonde-
terministic classes.

In a moment, we’ll look at primality testing, which until
recently was the most famous example of a problem that
could be solved in polynomial time with high probabil-
ity by a randomized algorithm, but which was not known
to be in � . This example has been taken from us, how-
ever, by Agarwal, Saxena, and Kayal, who in 2002 gave
a deterministic algorithm to test a number for primality
in polynomial time.

[P] gives two other interesting randomized algorithms:

� Testing whether a matrix of polynomials has determi-
nant identically zero, and

� Using a random walk through the space of settings to
find a satisfying instance of a 2-CNF formula
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CMPSCI 601: The Primality Problem Lecture 26

PRIME �
��� 
 N

���
is prime �

Proposition 26.2 PRIME 
 NP

Proof:
� 
 PRIME � � � � �

��� �
	 � � � � � � ��	 � � � � � 
�	 �
� �

�

Question: Is PRIME 
 NP?
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Fact 26.3 (Fermat’s Little Theorem): Let � be prime
and �

� � � � , then,

��� 
 ��� � ��� ���	���

Z
 � �
� � 
 � � � � ���
��� � � � � � �

GCD ��� � � � � � �
� 
� is the multiplicative group of integers mod � that are
relatively prime to � .

Euler’s Phi: � � � � �
�
Z 
 � �

Proposition 26.4 If � � ��� �� ������ 
�
�
�� ���� is the prime fac-
torizaton of � , then

� � � � � � ��� � � � � ��� � � � �

 
�
 ��� � � � ��� ��� � � � 
�
�
�� � �
Theorem 26.5 (Euler’s Theorem): For any � and any
� 
 Z 
 � ,

��� ��� 	�� � ��� � � � �
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Fact 26.6 Let � � � be prime. Then Z 
� is a cyclic group
of order � � � . That is,

Z
� �
� � � � � � � � �
� �
� � � � 
 � �

� 
 PRIME � ����� 
 Z
 � � � ord ��� � � � � � �
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Theorem 26.7 [Pratt]

PRIME 
 NP.

Proof:

Given
�

,

1. Guess � , � � � � �

2. Check � � 
 � � � ��� � � � � by repeated squaring.

3. Guess prime factorization,
� � � � � � �� � � �� 
 
�
 � � ��

4. Check for � � ��� � ,

� � 
 ��� ���	�� � � mod
� �

5. Recursively check that � � � � � �
���
� � � � are prime.


 � � � �
� � � � ��� 
 � � � � �


 � � � �
� � � � � �

Corollary 26.8 PRIME and Factoring are in NP 
 co-NP.
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CS601/CM730-A: More Primality Testing Lecture 26

Let � 
 Z
 �
� is a quadratic residue mod

�
iff,

� � � � � � � � � ��� ��� � � �

For � prime let,���� ��
����� �

���	 ��
 � if � is a quadratic residue mod �� � otherwise

Generalize to �
���� when
�

is not prime,�� �� �
�� �

�� �� �� �� �� ��
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Fact 26.9 [Gauss](Quadratic Reciprocity) For odd � � � ,

�� �� �� �

�����	 ����
 � � � � if � � � � � � ��� � or
� � � ��� ��� � �

� � � � � if � � ��� � � ��� � and
� � � ��� ��� � �

��� �� � �� �

�����	 ����
 � if
� � � � � � ����� or

� � � ��� �������
� � if

� � � � � � ����� or
� � � ��� �������
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This 200-year-old result gives us an efficient way to cal-
culate � �� � , that uses time polynomial in the length of

�
.

Fact 26.10 [Gauss] For � prime, � 
 Z 
� ,���� ��
����� � � ���

�

� � mod ���
Fact 26.11 If

�
is not prime then,

������
� � 
 Z
 � � �� �� �� � � ���

�
� � mod

� � �
������
� � � �

�

Solovay-Strassen Primality Algorithm:

1. Input is odd number
�

2. For ��� � � to � do
�

3. choose � � �
at random

4. if GCD ��� � � � �� � return(“not prime”)

5. if � �� � �
� � ���

�
� � mod

� � return(“not prime”)

6. �
7. return(“probably prime”)
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Theorem 26.12 Suppose we run Solovay-Strassen on a
number

�
. Then:

� If
�

is prime then the answer is always “probably
prime”.

� If
�

is not prime, then the probability of “probably
prime” is less than ��� � � .

Corollary 26.13 PRIME 
 “Truly Feasible”
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The new Agarwal-Saxena-Kayal algorithm is a great the-
oretical achievement (solving an open problem dating back
to at least 1970) but is not the best way in practice to
test primality. Solovay-Strassen (or the related Miller-
Rabin algorithm) runs faster and gives you numbers that
are reasonably certain to be prime. If you want a prime
of a given size, you generate random numbers until you
get one that passes the test many times. There are enough
primes so that you can expect this not to take too long.

FACTORING is still believed to be hard for conventional
computation. But – there is a 1994 algorithm due to Shor
that solves FACTORING in poly time on a quantum com-
puter. Only very small quantum computers have so far
been built, but one of them has successfully factored the
number 15 using something like Shor’s method.
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CS601/CM730-A: Randomized Classes Lecture 26

What does it mean for a problem to be solvable in ”ran-
dom polynomial time”? We can define a probabilistic
TM easily enough by having an NDTM

�
flip a coin for

each of its classes. There are then four different poly-
time complexity classes defined in the literature!

We define Prob � � � � � to be the probability that
�

ac-
cepts � . Remember that � is in NP if there exists

�

such that Prob � � ����� � � iff � 
 � . The new classes
have similar definitions:

� � is in RP if there exists
�

such that Prob � � � �����
����� for all � 
 � and Prob � � � ��� � � for all � �
 � .

� � is in ZPP if both � and � are in RP.
� � is in BPP if there exists

�
such that Prob � � � ��� �

� � � for all � 
 � and Prob � � � � � � ����� for all � �

� .

� � is in PP if there exists
�

such that Prob � � � � � �
����� iff � 
 � .
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CS601/CM730-A: Amplification Lecture 26

Which of these classes are practical? After all, you don’t
want to put up with a significant probability of a wrong
answer.

RP, the class generalizing the Solovay-Strassen primal-
ity algorithm, is pretty good. As we’ve seen, repeated
independent trials can reduce our error probability to ex-
ponentially small.

ZPP is even better in one sense, because if we try both
RP algorithms repeatedly, in a constant expected number
of trials we will get a guaranteed answer. This is his-
torically called a ”Las Vegas” algorithm (provably cor-
rect, probably fast) as opposed to an RP or BPP ”Monte
Carlo” algorithm (probably correct, provably fast).

PP, on the other hand, is completely useless in practice. If
the probability of acceptance is very very close to ����� , the
number of trials needed to make a statistical prediction of
whether it is over or under 1/2 could be exponential.
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But for BPP we are in good shape!

Proposition 26.14 If � 
 BPP then there is a probabilis-
tic, polynomial-time algorithm ��� such that for all � and
all inputs � of length n,

if � � 
 � � then Prob � � � � � � � � � � � � �
� �

if ��� �
 � � then Prob � � � � � � � � � � �
� �

Proof: Iterate � polynomially many times and answer
with the majority. The probability the mean is off by

�
�

decreases exponentially with � — the formal proof uses
Chernoff bounds. �
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Is BPP equal to P???

Probably, because pseudo-random number generators are
good.

It’s probably possible to build a poly-time deterministic
generator that gives numbers that are indistinguishable
from random to any poly-time procedure. Such a gener-
ator would allow us to derandomize BPP.

It’s not hard to show that if a language is in BPP, it
has non-uniform poly-size circuits, i.e., it is in the non-
uniform class PSIZE. This is because if we make the
probability small enough that a random string causes the
BPP algorithm to be wrong on a given input, we can en-
sure that some string exists that is right on all inputs.
There exists a circuit that has this string hard-wired into
it.
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CMPSCI 601: Undirected Reachability Lecture 26

REACH � �
��� � undirected

�
�
�
� � 	 �

s

s

a

b

c

d

e

TT

f

tH

T

H
H

H

H
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T

T
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Fact 26.15 Let

 � � � be the expected number of steps in a

random walk to visit all vertices in connected graph
�

,
starting from � . Then,


 � � � � ��� � � � � �
Corollary 26.16

REACH � 
 BPL
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ts a b c d e f

A look at this directed graph should convince you that
a random walk on it is not likely to reach all vertices in
polynomial time. To get to vertex 	 from � you would
have to guess right about � times in a row.

It’s very plausible that REACH � is in L, and one might
hope to prove it by derandomizing the random walk. (There
must exist a single sequence of choices of size

� � � � �
that visits every node of any undirected labelled � -node
graph.) But randomization doesn’t seem to help much
with the general REACH problem.
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CMPSCI 601: Interactive Proofs Lecture 26

[Goldwasser, Micali, Rackoff], [Babai]

Decision problem: � ; input string: �
Two players:

Prover — Merlin is computationally all-powerful. Wants
to convince Verifier that � 
 � .

Verifier — Arthur: probabilistic polynomial-time TM.
Wants to know the truth about whether � 
 � .
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Input = ��� � �
� � � � 	 � � ��� � 	

0. � has � � has �
1. flip 	 � , compute

� � ���
2. � � � �
3. flip 	 � , compute

� � ���
4. � � � �
... ... ...

� 	 . � � � �	�
� 	 � � . flip 	 �	��
 � , accept or reject
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Definition 26.17 � 
 IP iff there is such a polynomial-
time interactive protocol

1. If � 
 � , then there exists a strategy for �
Prob

� � accepts � �
�
�

2. If � �
 � , then for all strategies for �
Prob

� � accepts � � �
�

�

Observation 26.18 Iterating makes probabilities of er-
ror exponentially small.

Special Cases of IP:

� Deterministic Arthur = NP
� No Merlin = BPP
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Graph Non-Isomorphism 
 AM

Input =
� � � � � , � �

� � � � � � � � � � � � �

0. � has
� � � � � � has

� � � � �

1. flip � �
� � ���
��� ��� � � �

� � � �
flip � � ���
��� ����� 
 � �

� � � � � � � 	 � �
���
� ����� � � � � � 	 � � �
2. � � � � 
 �

� � � � �
3. accept iff � �

� �

Proposition 26.19 Graph Non-Isomorphism 
 AM

Proof: If
� � �	 � � � , then � will accept with probability

1.

If
� � 	

�
� � , then � will accept with probability � � 
 � .

�

Corollary 26.20 If Graph Isomorphism is NP-complete
then PH collapses to


 � � .
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Fact 26.21 Shamir’s Theorem: IP � PSPACE

proof that IP � PSPACE: Evaluate the game tree.

For � ’s moves choose the maximum value.

For � ’s moves choose the average value.

A

A A A A A A A A A A A A A A A A

M

M M M

M

M M M M M

A

A A A A A

M

Hard Direction: Construct an interactive proof that a
string is in QSAT. There are proofs in [P] and in Sipser.
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CMPSCI 601: Checkable Proofs Lecture 26

Any decision problem � 
 NP has a deterministic, polynomial-
time verifier.

By adding randomness to the verifier, we can greatly re-
strict its computational power and the number of bits of�

that it needs to look at, while still enabling it to accept
all of NP.

We say that a verifier � is � � � � � ��� � � � � -restricted iff for
all inputs of size � , and all proofs

�
, � uses at most� � � � � � � random bits and examines at most

� ��� � � � � bits
of its proof,

�
.

Let PCP � � � � � ��� � � � � be the set of boolean queries that are
accepted by � � � � � ��� � � � � -restricted verifiers.

Fact 26.22 (PCP Theorem) NP � PCP
� ��� � � � � �

The proof of this theorem is pretty messy, certainly more
than we can deal with here. But we can look at the appli-
cations of the PCP Theorem to approximation problems.
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MAX- � -SAT: Given a 3CNF formula, find a truth as-
signment that maximizes the number of true clauses.

��� � � � � � � � � � ��� � � � � � � �
� � � � � � � � � � � � � ��� � � � � � � � �
� � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Proposition 26.23 MAX- � -SAT has a polynomial-time

� �
�
� approximation algorithm.

Proof: Be greedy, set each variable in turn to the better
value. �
You can do better – a random assignment gets 7/8 of the
clauses.

Open for Years: Assuming NP �� P is there some � ,
�
�

�
� � s.t. MAX- � -SAT has no PTIME � -approximation

algorithm?
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Theorem 26.24 The PCP theorem (NP � PCP
� ���	� � � � � )

is equivalent to the fact that

If P �� NP, then

For some � , � � � � � ,

MAX- � -SAT has no polynomial-time, � -approximation
algorithm.

Fact 26.25 MAX- � -SAT has a PTIME approximation
algorithm with � �

�
� and no better ratio can be achieved

unless P � NP.
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