
CMPSCI 601: Recall: Circuit Complexity Lecture 25

depth � parallel time

width � hardware

number of gates � computational work � sequential time

Theorem: For all
�
, CRAM �������	��

����� � AC �

AC � � ThC � � NC � � L � NL � sAC � �
AC � � ThC � � NC � � sAC � � �����

� �
��� � NC � � � �

��� � AC � � � �
��� � ThC � � NC � P

NC ����� 
!�"� � ParallelTime �#���$

�"� on real hardware

AC ����� 
!�"� � CRAM �#���$

�"�
ThC �#���$
!�%� � ParallelTime �#���$
!�%� on “wet-ware”

sAC � � AC � but & -gates bounded

1



Alternation/Circuit Theorem

For
��� �

:

� NC � equals ATM’s with � �����	� 
!� space, � ��� � � � 
!� time
� AC � equals ATM’s with � � � � � 
!� space, � ����� � � 
!� al-

ternations

Proof Outline: Simulate ATM’s by circuits by mak-
ing a node for each configuration. Simulate circuits by
ATM’s using the Circuit Game.

Note that the AC � case of the statement of this theorem
is false. AC � is not equal to ATM’s with � �����	� 
!� space
and � � � � alternations: that’s the logspace hierarchy. On
HW#7 you used Immerman-Szelepcsenyi to prove that
this hierarchy is just NL.

What AC � actually equals is the log-time hierarchy, ATM’s
with � �����	� 
!� time and � � � � alternations. This is also
equal to FO given the suitable precise definitions.

2



sAC �#���$
!�"� Circuit

t(n)

b
1b

1

r

b b
bb

2
2

n
n

and

or

not

and

or

or

y

unbounded “or”s; bounded “and”s

Fact 25.1 sAC � � LOG(CFL) �
��� �����

a CFL � 	
� 


� �

3



CMPSCI 601: Alternation and CFL’s Lecture 25

We’ll conclude our discussion of parallel complexity by
showing where another one of our existing classes, the
context-free languages, fits into the NC hierarchy.

Theorem 25.2 (Ruzzo) If � is any context-free grammar,� ��� ��� sAC � .
Proof: Using the Alternation/Circuit theorem, we’ll prove
this by designing an ATM game for

� ��� � that has the fol-
lowing properties:

� White wins the game on input � iff � � � ��� � ,
� the game uses � � � � � 
!� space,
� the number of alternations is � ����� ��
!� , and
� all Black’s alternation phases consist of a single bit

move.

When we covert this game to a circuit, the last clause
ensures that all the AND gates have fan-in two, so we are
in sAC � . (Though our best upper bound for REACH is
also sAC � , it is believed that REACH is not complete for
sAC � while there are CFL’s that are complete for it.)

4



Let’s assume that � is in Chomsky normal form (only
rules of the form

� �
� �

,
� � �

, or � � �
). We

have an input string � , and White claims there is a way
to derive � �

� using the rules of � . Black, as usual,
disputes this.

White advances her claim by naming a node in the middle
of the parse tree and saying what it does. Specifically, for
some

�
, � , and

�
she says � �

� �����	� � �
�
��

� ������� ��� and� �

� � � � �	��� � 
 . Black picks one of these two claims to
challenge.

If White is telling the truth about the orginal claim, she
can get two true claims by telling the truth. But if she is
lying, one of her two subsidiary claims must be a lie. We
continue the process until we have a claim about a single
input letter, such as

� �
� � , which can be verified by

looking up the input letter and checking the rules of � .

5



This is a valid ATM game that decides whether � �� ��� � , but it does not yet meet our specification. There
are two problems:

� The game could last as long as 
 �

�
moves, rather

than the � � � � � 
!� we need, and
� The subclaim under dispute might not be specifiable

in space � � � � ��
!� , as it has the form
� �

� � � ���	� � � � � � � � ���	� � � �

� � � � �	��� � � � �
We need � ����� � 

� bits to record each “scar” in the
string.

6



We solve the first problem by setting a fair time limit on
White. If she has not reduced the claim to one letter in
� �����	� 
!� moves, she loses. But why is this fair? On her
move, she is dividing the parse tree of � into two pieces
by cutting an edge.

Lemma: (Lipton-Tarjan) Any binary tree can be cut on
some edge into two pieces, each at most 2/3 the original
size. (Proof on Spring 2003 HW#8, solutions on my web
site.)

So since White is so smart, she can choose her division
to leave smaller subtrees, and after � ��� � � 
!� moves she
can reduce the subtree to one node.

7



To solve the second problem, we force White to make
sure that the current claim is about a tree with at most
three scars, giving her � ����� � 

� more moves to spend on
this goal.

Lemma: Let
�

be any rooted binary tree and let
�
, � ,

and � be any three nodes none of which is an ancestor of
another. Then there exists a node � that is an ancestor of
exactly two of

�
, � , and � . (Proof on Spring 2003 HW#8,

with posted solutions.)

Now if White is faced with a tree with scars at
�
, � , and � ,

we force her to find some � and divide the tree there. This
may not shrink the tree under dispute very much, but it
makes sure that on the next move, the two subclaims have
only two scars each.

White still wins the revised game iff she should, and the
revised game now fits all the specifications. �

8



CMPSCI 601: � � � � -Depth Threshold Circuits Lecture 25

What we call ThC � here is often called TC � elsewhere.

ThC � is the set of languages solvable by threshold cirucits
of poly size and constant depth.

We proved ThC � � NC � by showing how to add 
 
 -bit
numbers in NC � , using redundant binary notation, base
two with digits

����� � ������� �
.

This has the effect that there are now many different “funny”
ways to write the same number. The idea is that we can
add two funny numbers in NC � , so we can add 
 of them
in NC � and then finally convert the funny result to stan-
dard binary in AC � � NC � .
On HW#8 you’ll provide some of the details of the con-
struction to add two funny numbers in NC � .

9



Some problems in TC � :
� Addition of two 
 -bit numbers is in FO � AC � (the

carry look-ahead adder)

� Addition of 
 
 -bit numbers is in ThC � but not in
AC � (by redundant notation)

� Multiplication of two 
 -bit numbers is in ThC � but
not in AC � .

� Sorting of 
 
 -bit numbers is in ThC � . (Compare
each of the 
 � pairs in parallel, then count up the wins
for each item to get its place.)

� Division (and iterated multiplication) of two 
 -bit num-
bers (to 
 bits of accuracy) is in polynomial-time uni-
form ThC � . ([BCH86], [Reif87], using Chinese re-
mainder notation)

� Division is in (first-order uniform) ThC � . ([Bill Hesse01],
[HAB02])

10



Lower Bounds Against AC � :
We just asserted that the iterated addition and multiplica-
tion problems are not in AC � . How could one prove such
a thing?

The argument is called a size lower bound for constant-
depth, unbounded fan-in circuits. Lower bounds often
call for detailed combinatorial arguments. In this case
Furst-Saxe-Siper (yes, Sipser the author and Sipser my
Ph.D. advisor) and Ajtai proved in the early 1980’s that
for any � , depth- � unbounded fan-in circuits need super-
polynomial size to decide the language

PARITY � �
� 	 � has an odd number of ones

�
.

It is not hard to show that PARITY circuit-reduces to iter-
ated addition and to multiplication, as defined in HW#7.
By the downward closure of AC � , then, neither of these
problems can be in AC � .

11



The key to the lower bound proof, which we won’t cover
in this course, is randomized restriction. They show that
by setting all but � 
 bits of the input randomly to 0 or 1,
you can turn a depth- � circuit computing PARITY of 

variables to a slightly larger depth- � � �

� � circuit comput-
ing PARITY of the remaining variables. Repeating this
process leads to a contradiction unless the original circuit
was superpolynomial size.

Later Yao and Håstad showed that a depth- � PARITY
circuit must have exponential size. In 1986 Smolensky
considered circuits that along with AND and OR gates
also have gates counting modulo some constant � . He
showed that with a prime modulus � you cannot count
the ones in the input modulo any number that is not a
power of � .

Embarassingly, it remains open to show any meaning-
ful size lower bounds on constant-depth circuits of AND,
OR, and mod- � gates where � is 6, or any product of
two or more primes. Such circuits might, for all we can
prove, be able to solve NP-complete problems.

12



CMPSCI 601: PSPACE Lecture 25

PSPACE � DSPACE � 
�� � � � � � NSPACE �#
�� � � � �

� PSPACE consists the problems we could solve with
a feasible amount of hardware, but with limit on com-
putation time.

� PSPACE is a large and very robust complexity class.
� With polynomially many bits of memory, we can search

any implicitly-defined graph of exponential size. This
leads to complete problems such as reachability on
exponentially-large graphs.

� We can search the game tree of any board game whose
configurations are describable with polynomially-many
bits. This leads to complete problems concerning win-
ning strategies.

13



CMPSCI 601: PSPACE-Complete Problems Lecture 25

Recall that part of Lecture 23’s Alternation Theorem says:

PSPACE � ATIME � 
�� � � � �
Recall QSAT, the quantified satisfiability problem, which
is the set of true quantified boolean formulas.

Proposition 25.3 QSAT is PSPACE-complete.

Proof: In Lecture 23 we proved that QSAT is in ATIME[n]
and hence in ATIME �#
 � � � � � . This is because the two
players can guess the quantified boolean variables, and
the referee can then evaluate the formula with these val-
ues.

14



It remains to show that QSAT is hard for ATIME �#
�� � :
Let

�
be an arbitrary ATIME � 
 � � machine.

Let
�

write down its 
�� alternating choices, � � � � ���	� � � � ,
and then deterministically evaluate its input, using the
choice vector � .

Let the corresponding DTIME � 
 � � machine be � .

For all inputs � ,
� � � � � � � � � � � � ��� � � � �����	�	� � � � � � � �	� � � � � � � � �
Applying the tableau construction from the proof of the
Fagin or Cook-Levin theorems to � , we see that there is
a reduction 
 from

� �	� � to SAT, so that:

� � � � � � � � � 

� � � � ��� SAT

Let the new boolean variables in 

� � � � � be � � �	��� ��� � � � .�
accepts � iff

“ � � � � � ��� � � � �	���	�
� � � � � � � � � � � �	��� ��� � � � ��

� � � � � ” � QSAT

�

15



GEOGRAPHY is a game with players � and
�

, played
on a directed graph with start node � .

1. � chooses a vertex � � with an edge from � .
2.
�

chooses � � , having an edge from � �
3. � chooses ��� , have an edge from � �

And so on. No vertex may be chosen twice. Whoever
moves last wins. (In the original version of the game, the
vertices consist of all known place names, and there is an
edge from � to � iff the last letter of � ’s name is the first
letter of � ’s, as in this graph:

Texas

Selma

Amherst

Transylvania

Africa

16



Proposition 25.4 Figuring out which player has a win-
ning strategy in a given position of GEOGRAPHY is
PSPACE-complete.

Proof:

GEOGRAPHY � PSPACE: search the polynomial-
depth game tree.

Other Half: QSAT



GEOGRAPHY

Given a quantified boolean formula, � , there is a general
construction to build a graph � � such that player � wins
the game on � � iff the formula is true. We first set up ver-
tices so that player � chooses a value for each existential
variable and player

�
choose one for each universal vari-

ables. Then we make vertices for each graph so that
�

’s
last move picks a clause, and � can then move iff that
clause is satisfied by some literal set to true by one of the
players.

17



Here is the graph � � where

� �
� � � � � � ��� � � � � & � �

� � � � & � � � �� �"�

(a v b)

(b v c)

(b v c)

a

a

b

c

c

b

18



Definition 25.5 A succinct representation of a graph is
� �$
 � � � � ��� � � �

�
� � � where

�
is a boolean circuit with� 
 inputs and

� � �
�

�
� �

����� � � � �

� � � � � �
����� � � � � �

� ��� � � �

SUCCINCT REACH � � � 
 � � �
�
� � � �

� �$
 � � � � REACH
�

�

Proposition 25.6 SUCCINCT REACH is PSPACE-complete.

Proof: This was assigned as a problem on Spring 2003’s
Homework 8, and is solved on the web pages for that
version of the course. �

Suitably generalized to 
 by 
 versions, Go and Chess
are also both PSPACE-complete. In general, an 
 by

 game where the playing board can change is going to
be PSPACE-complete because it can simulate alternating
poly-time. A game where � � � � pieces move around on a
board is going to be P-complete because it can simulate
alternating log space.

19


