CMPSCI 601: Recall From Last Time L ecture 23

Definition: Alternating time and space

Game Semantics: State of machine determines who
controls, White wants it to accept, Black wants it to re-
ject. L£L(A) = {w : White wins the M-game on input
w}.

Examples:

1. MCVP € ASPACE|log n]
2. QSAT € ATIME|n]
Theorem: For s(n) > logn,

NSPACE([s(n)] C ATIME[(s(n))?] C DSPACE[(s(n))’]
ASPACE[s(n)] = DTIME[20¢M)

Corollary:
ASPACE[logn| = P
ATIME[n°Y] = PSPACE
ASPACE[n°Y] = EXPTIME

1

CMPSCI 601 Parallel Computation Lecture 23

The Turing machine and the abstract RAM are sequential
machines, in that they perform only one operation at a
time.

Real computers are largely sequential as well, but:
e Modern computer networks allow us to apply many
processors to the same problem (e.g., SETI @one),

e Modern programming languages allow for parallel ex-
ecution threads,

e Modern processors are slightly parallel, with the ca-
pacity to do a few things at the same time,

e There have been some experimental massively paral-
lel computers such as the Connection Machine, and

e The circuit elements inside a given chip operate in
parallel.

Can we solve any problem a million times faster by ap-
plying a million parallel processors to it? Probably not,
but as with the P vs. NP question we don’t have any the-
orems confirming our intuition.

Parallel complexity theory studies the resources needed
to solve problems in parallel. To begin such a study we
need a formal model of parallel computation, analogous
to the Turing machine or RAM.

As it turns out, just as the TM and RAM have similar
behavior with respect to time and space, various differ-
ent parallel models have similar behavior with respect to
parallel time and amount of hardware.

Parallel Random Access Machines
CRAM[t(n)] = CRCW-PRAM-TIME[¢t(n)]-HARD[r®]

synchronous, concurrent read and write, uniform,

n?W) processors and memory

priority write: lowest number processor wins conflict
common write: write conflict crashes machine

The alternating Turing machine is another parallel model
of sorts, since the “acceptance behavior” depends on the
entire set of configurations.

The parallel time measure turns out to be the number of
alternations between existential and universal states:

Theorem 23.1 For logn < t(n) < n®Y, CRAM[t(n)]
IS equal to the class of languages of ATM’s with space
O(logn) and O(t(n)) alternations.

We won’t prove this here (I might put a piece of the proof
on HW#8), but we’ll show that ATM’s are closely related
to another parallel computing model, that of boolean cir-
cuits. First, however, a digression:

CS601/CM730-A: LH and PH L ecture 23

An important special case of ATM computation is when
the number of alternations is bound by a constant. \We
use the same names for constant-alternation classes that
we defined for the Arithmetic Hierarchy in HW#5. For
example,

1P consists of the languages of poly-time ATM’s that
always stay in existential states, that is, NP.

I1,P is the same for only universal states, that is, co-NP.

>oP consists of the languages of poly-time ATM’s that
have a phase of existential configurations followed by a
phase of universals. II;P Is the complement of >5P, and
SO on.

PH is defined to be the union of X;P and II;P for all con-
stant ¢, or languages of poly-time ATM’s with O(1) alter-
nations.

Theorem 23.2 PH = SO.

The proof is a simple generalization of Fagin’s Theorem,
NP = SO4.

The Logtime Hierarchy

On Spring 2003’s HW #7 we looked at ATM'’s that op-
erate in O(logn) time, making key use of their random-
access input tape. We proved then that such an ATM can
decide:

e any language in FO, and also

e the PARITY language, of strings with an odd number
of 1’s

PARITY is not in FO, though we won’t be able to prove
such a lower bound in this course.

The complexity class LH, the log-time hierarchy, is the
set of languages decidable in ATIME(logn) with O(1)
alternations. A careful solution shows that FO C LH. It
turns out that with the right definition of FO, FO = LH.

On this term’s HW#7 we look at the similar logspace hi-
erarchy LSH, which you’ll prove collapses to (is equal
to) NL.

CMPSCI 601: Circuit Complexity Lecture 23

Real computers are built from many copies of small and
simple components.

Circuit complexity uses circuits of boolean logic gates as
Its model of computation.

Circuits are directed acyclic graphs. Inputs are placed at
the leaves. Signals proceed up toward the root, r.

The code is straight-line in that gates are not reused (be-
cause the graph is acyclic. In fact the boolean straight-
line programs of Lecture 1 and HW#1 were simply a re-
formulation of boolean circuits.

Circuit Families and Languages:
Let S C {0, 1}* be a language (or decision problem).
Let, C;, Cy, Cs, . .. be acircuit family.
Each circuit C), has n input bits and one output bit r.
Definition: {C;},_\ computes S iff for all n and for all
w € {0,1}",

weE S & Cly(w) =1.

or
and
or
and
OI’ O O
o o t(n)
@) O
n?t/(' / /
_ - o O O .
b1 b b
b b 2 b n
1 2 n

It turns out that NOT gates in the middle of the circuit can
be pushed down to the bottom and eliminated without
changing the parameters of the circuit, so we will keep
circuits in this form.

Size and Depth:

The depth of the circuit is the length of the longest path
from an input to an output. (Compare the depth of an SLP
In HW#1.) The depth measures the parallel time, the
total delay for the circuit to compute its value, in terms
of the individual gate delays.

The size of the circuit is the number of gates, counting
the input gates and their negations. This is the length of
the corresponding SLP. It represents the computational
work used to solve the problem, and corresponds roughly
to the sequential time needed to evaluate the circuit.

These size and depth parameters become functions of
the input size n once we consider a circuit family instead
of a single circuit. These become our cost measures and
we use them to define complexity classes.

10

CMPSCI 601: Circuit Uniformity Lecture 23

Consider the class PSIZE of languages A that are com-
puted by a family of poly-size circuits. That is, for each
n, there is a circuit C', that accepts an input string w iff
w € A.

It is easy to see from our construction for Fagin’s Theo-
rem that P C PSIZE. Also since CVP is in P, it seems
that PSIZE should be no more powerful than P.

But as we’ve defined PSIZE, it contains undecidable lan-
guages! Look at UK = {w : |w| € K} for example. For
any input length n, there iIs a one-gate circuit that decides
whether the input is in U K. it either says yes or says no
without looking at the input at all. So UK is in PSZE,
but it’s clearly r.e.-complete as it’s just a recoding of K.

11

But this circuit is non-uniform. Given a number n, it Is
Impossible for any Turing machine, much less a poly-
time TM, to determine what C,, Is.

Let’s define P-uniform PSIZE to be those languages de-
cided by poly-time circuit families where we can com-
pute C,, from the string 1”7 in n°Y time. Now it’s easy
to see that P-uniform PSIZE is contained in P, because
our machine on input w can first build the circuit), and
then solve the CVP problem that tells what C,,| does on
Input w.

And in fact the tableau construction tells us that P is con-
tained in P-uniform PSIZE, because the circuit from the
tableau Is easy to construct. In fact it’s very easy to con-
struct — we could do it in F'(L) or even in F'(FO). Thus
we have:

Theorem: P = P-uniform PSIZE = L-uniform PSIZE
= FO-uniform PSIZE.

12

Definition 23.3 (The NC Hierarchy) Let¢(n) be a poly-
nomially bounded function and let S C {0,1}* Then
S is in the circuit complexity class NC|¢t(n)], AC[t(n)],
ThClt(n)], respectively iff there exists a uniform family
of circuits C', Cs, . . . with the following properties:

LForallwe {0,1}, weS <& Cylw) =1

2. The depth of C), is O(t(n)).

3. |Cp| < nPW

4. The gates of ', consist of:

NC AC ThC
bounded fan-in unbounded fan-in unbounded fan-in
and, or gates and, or gates threshold gates

5y B s

13

For:=0,1,...,

NC' = NCJ[(logn)]
AC' = AC|(logn)"]

ThC' = ThC|(logn)’]

NC = ‘fj’ONci _ TJOOAC@’ _ ‘fj’OThCi

1

7

7

We will see that the following inclusions hold:

AC’ ¢ ThC' C NC'CLCNL C AC!
AC! C Thc! C NC? C AC?
AC? C ThC? C NC° C AC’
: C : C i C i
ij’lAci = fij’lThci = ij’lNci = NC

14

The word uniform above means that the map, f : 1" —
C, is very easy to compute, for example, f € F(L) or
f € F(FO). Though these uniformity conditions are a
subject dear to my heart, we won’t worry too much about
the details of them in this course.

Overall, NC consists of those problems that can be solved
In poly-log parallel timeon a parallel computer with poly-
nomially much hardware. The question of whether P =
NC is the second most important open question in com-
plexity theory, after the P = NP question.

You wouldn’t think that every problem in P can be sped
up to polylog time by parallel processing. Some prob-
lems appear to be inherently sequential. If we prove that
a problem is P-complete, we know that it is not in NC
unless P = NC.

15

Theorem 23.4 CVP, MCVP (monotone CVP) and HORN-
SAT are all P-complete.

Proof: CVP is the set of pairs (C, z) such that circuit C
accepts input string = (which must thus be of the right
length). This is pretty clearly in P because we can evalu-
ate C' gate by gate.

To reduce an arbitrary P language to CVP, we use the
tableau construction from the Fagin or Cook-Levin proofs
(or from the proof that P is contained in alternating logspace).
Since each cell of the tableau depends on those just below

It, and any function of O(1) boolean inputs has circuits of
O(1) size and depth (HWH#1), we can build a circuit that
computes each cell value. The output gate of this circuit
tells us whether the machine accepts the input by looking

at the first cell of the tape at the last time step.

The monotone problem MCVP is clearly still in P. To
reduce CVP to MCVP we can use double-rail logic. For
each gate g of the orginal circuit C' we make two gates,
one to compute g and the other to compute —g. If we
have done this inductively for g’s children, it’s easy to do
It for g with AND and OR gates (there are four cases).

16

HORN-SAT is the language of satisfiable boolean formu-
las in HORN-CNF — AND’s of clauses, each of which is
of the form (z1 A ... A xp) — y where the x;’s and y are
variables (not negated). We solve it in P with a greedy al-
gorithm, starting with all variables false and setting true
only those required by the clauses, in successive passes.

To reduce MCVP to HORN-SAT, we make a variable for
each gate and one or two clauses for the effect of each
gate. If g is an AND gate with children h; and ho, we
add the Horn clause (hy A hy) — g. If g is the OR of h;
and hs, we add h; — g and hy — ¢. We then force the
Inputs to the correct values and force the output gate’s
variable to 1, and we are satisfiable iff the circuit actually
computes 1.

)

17

Arithmetic Hierarchy re

co-r.e.
W co-r.e. r.e complete

Recursive

Primitive Recursive

EXPTIME

PSPACE

co-NP Polynomial-Time Hierarchy NP

complete complete

co-NP NP
NP N co-NP

"truly feasible"

NC

NC 2

log(CFL) sact

NSPACE[log n]

DSPACE[log n]

1
Regular NC

ThC

L ogarithmic-Time Hierarchy AC’

18

