CMPSCI 601: Recall From Last Time L ecture 16

Definition: I'is consistent iff I' I/ false.

Completeness Theorem: If T" is consistent then IT" is
satisfiable (that is, there exists a model A such that A =
).

Proof Outline:

e Add witnessing constants cp(,) for every formula P(x)
with one free variable.

e Extend I' to an existentially complete theory A that
satisfies the Henkin Property: If A - dz : P(x),
then A P(Cp(x))

e Build a model of T by taking the objects to be equiv-
alence classes of the constants (including the wit-
nessing constants), where two constants c¢; and ¢, are
equivalent if A - ¢; = cs.

e Check that this model i1s well-defined.

Versions of the Proof: There are two versions of Lec-
ture 15, the one | wrote and the one that Prof. Immerman
delivered. Both are now up on the course web site. The
principal difference is that Prof. Immerman built A to
be formally complete as well, which simplifies the proof
somewhat. My version follows [BE] more closely.

Corollary to Completeness:
['E & '

=X & =
FO-VALID — FO-THEOREMS

Note that FO-VALID and FO-THEOREMS are state-
ments that are true in any model of the given vocabu-
lary. While we constructed a special model where every
statement was either provably true or provably false, this
IS not true in general. An FO-VALID statement about
graphs would be true for all graphs, but most interesting
statements are true for some graphs and not for others.

CMPSCI 601: Compactness Theorem Lecture 16

Just as in propositional logic, we can apply completeness
to get another useful property:

Theorem 16.1 (Compactness Theorem) Let I' be a set
of sentences. Suppose every finite subset of I' has a model.

Then I" has a model.

Proof: If I'is inconsistent (meaning that L can be proved
from I' in Fitch), then some finite subset of I" is inconsis-
tent because Fitch proofs are finite.

But no finite subset of I can be inconsistent because that
set has a model and Fitch is sound.

So I' IS consistent.

By completeness, then, I' has a model.

CMPSCI 601 Compactness Applications Lecture 16

The Compactness Theorem has surprising consequences
for number theory:

Theory(N) = {p € L(Xn) | N | ¢}

[' = Theory(N) U {¢>0,c>1,c>2,c¢>3,...

Corollary 16.2 This theory I" has a model.

There is a countable model of Theory(N) that is not iso-
morphic to N.

L(3) cannot uniquely characterize N.

Proof: Every finite subset of I" is satisfiable by (N,) for
¢ sufficiently large.

By Compactness, I' is satisfiable. [

Corollary 16.3 “Connectedness’ is not expressible in the
first-order language of graphs, £(%,)

Proof:
Suppose that y = “l am connected.”
I' = {x} U {DIST(s,t) >1,DIST(s,t) >2,...}

DIST(xg,z,) >n =

n—1

(Vﬂi‘l . 'ili'n—l) .VO (CI% # Tiy1 N ﬁE(fBi, ZC¢+1))

1=

Every finite subset of I Is satisfiable.
By Compactness, I' is satisfiable.
This is a contradiction.

Thus “Connectedness” is not expressible in the first-order
language of graphs. [

The Downward Lowenheim-Skolem Theorem:

Theorem 16.4 If a set of first-order sentences T, has any
model at all, it has a countable model.

Proof: Suppose that T, has a model. By the Sound-
ness Theorem, T, must be consistent. Our proof of the
Completeness Theorem thus constructs a model for T,
where the objects are the equivalence classes made from
the witnessing constants {ci, co, . . . }.

Since there were only countably many constants to put
Into equivalence classes, there can be only countably many
classes and thus this new model has a countable domain.

A

The set of real numbers R and the set of countable binary
sequences are both uncountable. But if we define a first-
order vocabulary to talk about R, for example, we get a
first-order theory Th(R), the set of first-order sentences
that are true about the actual real numbers R.. This theory
has a countable model!

Thus there iIs a countable set, with “addition” and “multi-
plication” operations and a “zero” element, that satisfies
exactly the same first-order sentences as does R. Some-
thing must be wrong with this model, since it’s not the
“real” R, but we can’t state whatever it is in first-order
logic.

In first-order set theory even stranger things happen. You
can prove that there are sets that are uncountable, big-
ger than the reals, and even bigger than that. So there is
a countable model, M, that has sets that M thinks are
uncountable.

The reason this is possible is that the definition of “C' is
countable” is that there exists a one-to-one function from
C to N. Thus M might think that a set C, that is actually
countable, Is uncountable because M doesn’t have any
of the functions that demonstrate that C' is countable.

CMPSCI 601 Formal Number Theory

Lecture 16

rXxoy)=(xxy) +x
NTs = (Vz)(z10=1)
NTy = (Vay)(z T o(y) = (z Ty) x v)
NTy = (Va)(z < o(z))
NTi = (Vay)(z <y — o(z) <y)
NTy, = Vay)(—(z <y) <y < x)

14
NENT = ANT;

NT is a set of statements in the vocabulary of number
theory. As you can easily see, all of them are true for the
structure N consisting of the actual natural numbers.

NT consists of the first four of the Peano axioms, to-
gether with the two parts of the inductive definitions of
addition, multiplication, and exponentiation, and order.

10

But we’re missing the fifth Peano axiom, the rule of
mathematical induction. This means that there’s plenty
we can’t prove from NT, including such simple things
as the commutativity of addition and multiplication! We
call the sentences provable from NT a fragment of true
number theory.

Why don’t we include the rule of induction? For one
thing, in the world of first-order logic it is an infinite
set of axioms. For every formula P(z) with one free
variable, we need a separate axiom to say that Vz : P(x)
follows from P(0) and Vx : P(x) — P(o(x)).

There is a larger fragment of number theory called Peano
Arithmetic that has these induction axioms. But we’ll
see that there are things true of N that can’t be proved
in Peano Arithmetic either. And NT will be powerful
enough to allow us to prove the Incompleteness Theo-
rem, which is our main goal here.

11

First let’s see that NT is actually good for something.
This theorem is number 6.1 in [P], which is a good refer-
ence if you want to learn more.

Theorem 16.5 Let have no variables. Then
N E @ & NT - ¢

Proof: ¢ is a boolean combination of t < ¢/, ¢t = ¢'.

Case 1: tandt' are numbers: o(g---c(0)---).

=use NT{,NT,

< use NTqp, NTq3, NTq14

Case 2: t,t' use +, x, 7.

Use NTy, ..., NT, to transform these to numbers. [

12

Definition 16.6 A formula ¢ € L£(Xy) is bounded iff it
can be written with all quantifiers in front, and all univer-
sal quantifiers bounded. [

Example:
Ve <9)Ty)(Vz <2t (x xy)(z1T3+213#17)

Remark: If ¢(v) is bounded and has only one free
variable, v, then S, is r.e., where,
S, = {neN|NEgn)}.

Note that the bounded sentences are not closed under
negation!

They are sentences that you can check by (a) naming
numbers and (b) doing sequences of tests that are guar-
anteed to finish.

This 1s reminiscent of Bloop but not the same thing, be-
cause there is no equivalent in Bloop for the unbounded
4. A proof can name a number, but a Bloop program
can’t look for it without a limit on how far it may look.

13

NT is strong enough to deal with these sentences as well,
as we see from the following ([P]’s Theorem 6.2):

Theorem 16.7 Let ¢ be a bounded sentence (a bounded
formula with no free variables). Then
N E @ & NT - ¢ .

Proof:

<« Since Fitch is sound and NT is true in N, everything
we prove from NT is also true in N.

=-. We use induction on the number of quantifiers in .

Assume: N E o.

Base case: A sentence with no quantifiers has no vari-
ables, so we are done by the previous theorem.

Inductive step: ¢ = (Jx)v.

Thus, N = ¢z < n], for some particular n € N.
Thus, NT F [z < n| by the inductive hypothesis
Thus, NT F ¢ by 3-Intro.

14

Other Inductive step: ¢ = (Vz < t)1.

The term ¢ must be closed, meaning that no variables
occur in it. So by unrolling the operations, NT ¢ = n
for some particular n € N.

NTlo, NTH, NTy F (SE <n—x=0Ve=1V---Vx = n—l)

Nk lz i), i=0,....n—1

NTFlz i, ¢=0,....,n—1

Now we can do a big A-elim, with = > ¢ as the other
case, to get:

NT - o

15

Definition 16.8 Let f : N* — N.
Formula ¢ ¢ represents f iff forall ny,...,ng, m € N,

f(ni,...,nx) =m & N = pr(ng,...,ngm)
A

Example: f(n)=n?+1.
Let pr(n,m)=(nxn)+1=m.

prn,m) & (nxn)+l=m <& f(n)=m

What Does This Mean?

If o ¢(n, m) isa bounded formula, thenso is 3m : ¢ ¢(n, m),
which says that f is defined on input n. Remember that
NT can prove any true bounded sentence. So while it
may not be able to prove Vn : Im : f(n,m) (“f is well-
defined”), it can prove that f(n) exists for any particular
n.

16

What other functions can we represent? All our tools for
talking about sequences, for starters:

Lemma 16.9 The primitive recursive functions Prime, PrimeF,

IsSeq, Length, and Item are each representable by bounded
formulas.

Proof:

PrimeF(n, p) asserts that p is prime number n , by assert-
Ing that there exists a number,

s = 22x3x5ExPx1l*x. xp"

rly = (Fz<y+1)(x x z=y)
DE(z,e,y) = a°ly A = fy

Prime(z) = x>1 AN (Vy,z <z)(y X 2 # x)

PrimeF(n,p) = (3s)(Prime(p) A 2 fs A DE(p,n,s) A
(Vg < p)(Vq' < g)(—Prime(q)
V =Prime(q’)
V (3¢" < g)(¢' < ¢" A Prime(q"))
V (Je < ¢q)(DE(¢’, e, s) ADE(q,e +1,5))))

17

1SSeq(z) = (Fz < z)(Vi < x)(Ip < 2 1 x)(PrimeF (i, p) A
(t<z4+1Aplz) V(i>z+1 A —p|x)))

Length(z,4) = (Jk,p,q)(IsSeq(z) N k+1=1/¢
A PrimeF(k, p)
A PrimeF(4,q) N plx N q fx)

ltem(z, i, e)

(Ip)(IsSeq(x) A PrimeF(i, p)
A DE(p, e +1,2))

18

It’s not a coincidence that these formulas are all primitive
recursive and all representable by bounded formulas:

Theorem 16.10 Every primitive recursive function is rep-
resentable by a bounded formula.

Proof: 1I’d make this an exercise, but it’s in Lecture 15
of the Spring 2003 notes. You might think we could
have skipped the clever proofs for the individual func-
tions above. But the proof of this theorem uses sequences
to deal with primitive recursion. We have to do the work
of coding sequences as numbers someplace. [

19

Bloop, Floop, and Bounded Formulas

Note: In fact whenever we use an 3 quantifier in the
proofs above, with some more effort we could have made
It a bounded d quantifier. A function is Bloop-computable
Iff it is represented by a formula where both kinds of
quantifiers are bounded. (It should be pretty clear that
a Bloop program can test the truth of such a “completely
bounded” formula.)

On HW#5 I’ll have you prove that a function is Floop-
computable iff it is represented by a bounded formula
as we have defined it here, I.e., a V-bounded formula.
The intuition should be pretty clear — in Floop you can
look for the number satisfying the unbounded 4, and with
the bounded formula you can use 3 to express that the
whi | e loops will terminate.

But note that all we are going to need to prove Godel’s
theorem is that being Bloop-computable (primitive recur-
sive) implies representability by a bounded formula.

20

Now What is This Good For?

Remember the most complicated primitive recursive pred-
icate we looked at earlier - COMP(n, z, ¢,y), meaning
that c Is a halting computation of the Turing machine M,
on input x, and that its output Is y.

Theorem 16.11 COMP(n, x, ¢, y) is represented by a bounded
formula.

Proof: Thiswould follow from the general theorem about
primitive recursive functions, of course. But even with-
out that, you can go back to Lecture 9 where we proved
that COMP is a primitive recursive predicate by express-
Ing It In terms of the sequence operations. This argument
essentially constructs the bounded formula directly — I’ll
have you follow up on the details in HW#5. [

21

Now things get interesting!

Corollary 16.12 K is representable by a bounded for-
mula.

Proof:
ex(n) = (3¢)(COMP(n,n,c, 1))

By our earlier results about NT:

K = {n | N ¢x(n)}

K = {n | NTF ¢pk(n)}

Our standard unsolvable problem can be defined in terms
of NT.

22

Definition 16.13 For a structure A € STRUC[Y]],
Theory(A) = {pe LX) | A ¢}

Theory(N) = {p € L(XN) | NE ¢}

Thus Theory(N) is true number theory.

Theorem 16.14 (Godel’s Incompleteness Theorem) There
IS no r.e. set of sentences I" such that

1.N T, and
2. T+ Theory(N).

“There is no axiomatization of number theory, much less
all of mathematics.”

23

Proof: LetI"bere.and N =T

S = {neN|T'F-pgn)}

Sisre. and S C K. (Why the latter? Because if a
number n were in K, we would have NT F ¢k (n), which
IS Impossible because NT and I' are both true in N.)

Intuitively, S = {neN |I'FneK}

S is an r.e. subset of the non-r.e. set K. It can’t be equal
to K, and in fact it has to miss infinitely many elements.
(Since if it missed only finitely many, S plus those ele-
ments would still form an r.e. set.)

So there exist infinitely many n € N s.t.,

N = -px(n) and TV =pg(n))

24

Actually [P] states this result in the following form:

[P] Theorem 6.3: The set of unsatisfiable sentences
and the set of sentences provable from NT are recursively
Inseparable.

Thus a recursive set not only cannot separate true number
theory from false number theory, but can’t even include
all the true bounded formulas without letting in some-
thing inconsistent.

[P] has proved that the sets {M: M outputs “yes” on e}
and {M: M outputs “no” on €} are recursively insepara-
ble. (Try to show this yourself!)

Look at the sentence “NT holds and there is an accepting
computation of M on €”. If M says “yes”, this is prov-
able from NT. If M says no, it Is inconsistent, because it
says that the computation says “no” while NT can prove
that it says “yes”.

25

cvpscieo1: SKetch of Godel’s Original Proof Lecures

e Encode symbols as natural numbers.

e Encode formulas as finite sequences of natural num-
bers.

e Encode proofs as finite sequences of formulas.

e Let I be a primitive recursive axiomatization of some
portion of mathematics including number theory. The
following predicates are primitive recursive and thus
first-order definable in £L(Xy).

— Formula(z): “x is the number of a formula”
— Axiom(z): “z is the number of an axiom”

— Proof(z): “z is the number of a proof”

— Theorem(z): “z is the number of a theorem”

o Let Ry, Ry, ... list all first-order formulas with one
free variable, i.e., first-order definable sets.

eletG = {n | —Theorem(R,(n))}

e G={n | R,n)} for some g

e R,(q) = —Theorem(R,(q)) = “I am not a theo-
rem”

o If R)(q) thenT' I/ R,(q); If—R,(q)thenl'F R,(q).

26

Theorem 16.15 FO-THEOREMS is r.e. complete.

Proof: We have already seen that FO-THEOREMS is
r.e..

Recall that K is represented by a bounded formula ¢ .

neK < NEowg(n) < NTFpg(n)

neK & “NT— ¢g(n)” € FO-THEOREMS

We have shown K < FO-THEOREMS, by defining f so
that:

F(n) = “NT = gic(n)”

27

